
Formula for number of images formed by two plane mirrors incident at an angle $\theta $ is $n$ = $\dfrac{{360^\circ }}{\theta }$. If n is even, the number of images is n-1, if n is an odd number of images.
Column I Column II a) $\theta $ $ = $ $60^\circ $ 1) n $ = $ 9 b) $\theta $ $ = $ $60^\circ $ 2) n $ = $ 3 c) $\theta $ $ = $ $60^\circ $ 3) n $ = $ 5 d) $\theta $ $ = $ $60^\circ $ 4) n $ = $ 7 5) n $ = $ 1
Column I | Column II |
a) $\theta $ $ = $ $60^\circ $ | 1) n $ = $ 9 |
b) $\theta $ $ = $ $60^\circ $ | 2) n $ = $ 3 |
c) $\theta $ $ = $ $60^\circ $ | 3) n $ = $ 5 |
d) $\theta $ $ = $ $60^\circ $ | 4) n $ = $ 7 |
5) n $ = $ 1 |
Answer
481k+ views
Hint: Image is defined as the collection of focus points of light rays coming from an object. If the image of the object is viewed in two plane mirrors that are inclined to each other, more than one image is formed. The number of images formed by two plane mirrors depends on the angle between the mirror.
Complete step by step solution:
Given the angle is $\theta $.
If the value of $\dfrac{{360^\circ }}{\theta }$is even, then we will use the formula
No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
If the value $\dfrac{{360^\circ }}{\theta }$is odd, then we will use the formula
No. of images $ = $$\dfrac{{360^\circ }}{\theta }$
a) When $\theta $ $ = $ $60^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{60^\circ }}$$ = $ 6, where 6 is an even number.
we will use the formula for No. of images $ = $ $\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 6 $ - $1 $ = $ 5
Thus, the images formed will be 5.
b) When $\theta $ $ = $ $40^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{40^\circ }}$$ = $ 9, where 9 is an odd number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta }$$ = $ 9
Thus, the images formed will be 9.
c) When $\theta $ $ = $ $90^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{90^\circ }}$$ = $ 4, where 4 is an even number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 4 $ - $1 $ = $ 3
Thus, the images formed will be 3.
d) When $\theta $ $ = $ $180^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{180^\circ }}$$ = $ 2, where 2 is an even number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 2 $ - $1 $ = $ 1
Thus, the images formed will be 1.
Hence the correct option for the problem is a $ = $3, b $ = $1, c $ = $2, d $ = $5.
Note: 1) If $\dfrac{{360^\circ }}{\theta }$ is a fraction, then the number of images formed will be equal to its integral part.
2) The smaller the angle, the greater the number of images.
Complete step by step solution:
Given the angle is $\theta $.
If the value of $\dfrac{{360^\circ }}{\theta }$is even, then we will use the formula
No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
If the value $\dfrac{{360^\circ }}{\theta }$is odd, then we will use the formula
No. of images $ = $$\dfrac{{360^\circ }}{\theta }$
a) When $\theta $ $ = $ $60^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{60^\circ }}$$ = $ 6, where 6 is an even number.
we will use the formula for No. of images $ = $ $\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 6 $ - $1 $ = $ 5
Thus, the images formed will be 5.
b) When $\theta $ $ = $ $40^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{40^\circ }}$$ = $ 9, where 9 is an odd number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta }$$ = $ 9
Thus, the images formed will be 9.
c) When $\theta $ $ = $ $90^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{90^\circ }}$$ = $ 4, where 4 is an even number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 4 $ - $1 $ = $ 3
Thus, the images formed will be 3.
d) When $\theta $ $ = $ $180^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{180^\circ }}$$ = $ 2, where 2 is an even number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 2 $ - $1 $ = $ 1
Thus, the images formed will be 1.
Hence the correct option for the problem is a $ = $3, b $ = $1, c $ = $2, d $ = $5.
Note: 1) If $\dfrac{{360^\circ }}{\theta }$ is a fraction, then the number of images formed will be equal to its integral part.
2) The smaller the angle, the greater the number of images.
Recently Updated Pages
Uniform Acceleration: Definition, Equations & Graphs for JEE/NEET

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Electrical Resistance - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Wheatstone Bridge Explained: Principle, Working, and Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Centre of Mass of Hollow and Solid Hemisphere Explained

Average and RMS Value in Physics: Formula, Comparison & Application
