
Class 10 Maths Chapter 8 Exercise 8.3 Trigonometry Questions and Answers: FREE PDF
Class 10 Maths Chapter 8 Exercise 8.3: Trigonometry covers essential concepts in trigonometry, such as the relationship between the angles and sides of right-angled triangles. The NCERT Solutions for Exercise 8.3 provide step-by-step solutions to help students grasp these concepts and apply them in solving problems. By referring to these solutions, students can improve their understanding of trigonometric ratios and their applications in various problems.
Table of ContentThese solutions not only help you solve the questions but also provide visual aids and detailed explanations that align with the CBSE syllabus. The Class 10 Maths Chapter 8 Exercise 8.3 solutions help build a strong foundation in trigonometry, enabling students to approach exams confidently and solve problems efficiently.
Class 10 Maths Chapter 8 Exercise 8.3 Trigonometry NCERT Solutions
How Can Class 10 Maths Chapter 8 Exercise 8.3 Help In Exam Preparation With Step By Step Solutions
1. Express the trigonometric ratios $\sin A,\sec A$ and $\tan A$ in terms of $\cot A$.
Ans: For a right triangle we have an identity ${{\operatorname{cosec}}^{2}}A=1+{{\cot }^{2}}A$.
Let us consider the above identity, we get
${{\operatorname{cosec}}^{2}}A=1+{{\cot }^{2}}A$
Now, reciprocating both sides we get
$\Rightarrow \dfrac{1}{{{\operatorname{cosec}}^{2}}A}=\dfrac{1}{1+{{\cot }^{2}}A}$
Now, we know that $\dfrac{1}{{{\operatorname{cosec}}^{2}}A}={{\sin }^{2}}A$, we get
$\Rightarrow {{\sin }^{2}}A=\dfrac{1}{1+{{\cot }^{2}}A}$
$\Rightarrow \sin A=\pm \dfrac{1}{\sqrt{1+{{\cot }^{2}}A}}$
Now, we know that sine value will be negative for angles greater than $180{}^\circ $, for a triangle sine value is always positive with respect to an angle. Then we will consider only positive value.
$\therefore \sin A=\dfrac{1}{\sqrt{1+{{\cot }^{2}}A}}$
We know that $\tan A=\dfrac{1}{\cot A}$
Also, we will use the identity ${{\sec }^{2}}A=1+{{\tan }^{2}}A$, we get
${{\sec }^{2}}A=1+{{\tan }^{2}}A$
$\Rightarrow {{\sec }^{2}}A=1+\dfrac{1}{{{\cot }^{2}}A}$
$\Rightarrow {{\sec }^{2}}A=\dfrac{{{\cot }^{2}}A+1}{{{\cot }^{2}}A}$
\[\Rightarrow \sec A=\dfrac{\sqrt{{{\cot }^{2}}A+1}}{\sqrt{{{\cot }^{2}}A}}\]
\[\therefore \sec A=\dfrac{\sqrt{{{\cot }^{2}}A+1}}{\cot A}\]
2. Write All the Other Trigonometric Ratios of $\angle A$ in terms of $\sec A$.
Ans:
We know that $\cos A=\dfrac{1}{\sec A}$.
$\therefore \cos A=\dfrac{1}{\sec A}$
For a right triangle we have an identity ${{\sin }^{2}}A+{{\cos }^{2}}A=1$.
Let us consider the above identity, we get
${{\sin }^{2}}A+{{\cos }^{2}}A=1$
Now, we know that $\cos A=\dfrac{1}{\sec A}$, we get
$\Rightarrow {{\sin }^{2}}A=1-{{\cos }^{2}}A$
$\Rightarrow {{\sin }^{2}}A=1-\dfrac{1}{{{\sec }^{2}}A}$
$\Rightarrow \sin A=\sqrt{1-{{\left( \dfrac{1}{\sec A} \right)}^{2}}}$
$\therefore \sin A=\dfrac{\sqrt{{{\sec }^{2}}A-1}}{\sec A}$
Also, we will use the identity ${{\sec }^{2}}A=1+{{\tan }^{2}}A$, we get
${{\tan }^{2}}A={{\sec }^{2}}A-1$
$\therefore \tan A=\sqrt{{{\sec }^{2}}A-1}$
Now, we know that $\cot A=\dfrac{\cos A}{\sin A}$, we get
$\Rightarrow \cot A=\dfrac{\dfrac{1}{\sec A}}{\dfrac{\sqrt{{{\sec }^{2}}A-1}}{\sec A}}$
$\therefore \cot A=\dfrac{1}{\sqrt{{{\sec }^{2}}A-1}}$
We know that $cosecA=\dfrac{1}{\sin A}$, we get $\therefore cosecA=\dfrac{\sec A}{\sqrt{{{\sec }^{2}}A-1}}$
3. Choose the Correct Option and Justify Your Choice:
\[9{{\sec }^{2}}A-9{{\tan }^{2}}A=\] …….
$1$
$9$
$8$
$0$
Ans: The given expression is $9{{\sec }^{2}}A-9{{\tan }^{2}}A$.
The given expression can be written as
$\Rightarrow 9{{\sec }^{2}}A-9{{\tan }^{2}}A=9\left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)$
Now, we will use the identity ${{\sec }^{2}}A=1+{{\tan }^{2}}A$, we get
${{\sec }^{2}}A-{{\tan }^{2}}A=1$
$\Rightarrow 9{{\sec }^{2}}A-9{{\tan }^{2}}A=9\left( 1 \right)$
$\therefore 9{{\sec }^{2}}A-9{{\tan }^{2}}A=9$
Therefore, option (B) is the correct answer.
$\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)$
$0$
$1$
$2$
$-1$
Ans: The given expression is $\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)$.
We know that the trigonometric functions have values as:
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$, $\cot \theta =\dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\tan \theta }$, $cosec\theta =\dfrac{1}{\sin \theta }$ and $sec\theta =\dfrac{1}{\cos \theta }$
Substituting these values in the given expression, we get
$\Rightarrow \left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)=\left( 1+\dfrac{\sin \theta }{\cos \theta }+\dfrac{1}{\cos \theta } \right)\left( 1+\dfrac{\cos \theta }{\sin \theta }-\dfrac{1}{\sin \theta } \right)$
$\Rightarrow \left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)=\left( \dfrac{\cos \theta +\sin \theta +1}{\cos \theta } \right)\left( \dfrac{\sin \theta +\cos \theta -1}{\sin \theta } \right)$
Now, by applying the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, we get
$\Rightarrow \left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)=\dfrac{{{\left( \sin \theta +\cos \theta \right)}^{2}}-{{1}^{2}}}{\sin \theta \cos \theta }$
$\Rightarrow \left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)=\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta +2\sin \theta \cos \theta -1}{\sin \theta \cos \theta }$
Now, by applying the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\Rightarrow \left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)=\dfrac{1+2\sin \theta \cos \theta -1}{\sin \theta \cos \theta }$
$\Rightarrow \left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)=\dfrac{2\sin \theta \cos \theta }{\sin \theta \cos \theta }$
$\therefore \left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)=2$
Therefore, option (C) is the correct answer.
$\left( \sec A+\tan A \right)\left( 1-\sin A \right)=$ ………
$\sec A$
$\sin A$
$cosecA$
$\cos A$
Ans: Given expression is $\left( \sec A+\tan A \right)\left( 1-\sin A \right)$.
We know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $sec\theta =\dfrac{1}{\cos \theta }$
Substituting these values in the given expression, we get
$\left( \sec A+\tan A \right)\left( 1-\sin A \right)=\left( \dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A} \right)\left( 1-\sin A \right)$
$\Rightarrow \left( \sec A+\tan A \right)\left( 1-\sin A \right)=\left( \dfrac{1+\sin A}{\cos A} \right)\left( 1-\sin A \right)$
$\Rightarrow \left( \sec A+\tan A \right)\left( 1-\sin A \right)=\left( \dfrac{\left( 1+\sin A \right)\left( 1-\sin A \right)}{\cos A} \right)$
Now, by applying the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, we get
$\Rightarrow \left( \sec A+\tan A \right)\left( 1-\sin A \right)=\left( \dfrac{{{1}^{2}}-{{\sin }^{2}}A}{\cos A} \right)$
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\Rightarrow \left( \sec A+\tan A \right)\left( 1-\sin A \right)=\left( \dfrac{{{\cos }^{2}}A}{\cos A} \right)$
$\therefore \left( \sec A+\tan A \right)\left( 1-\sin A \right)=\cos A$
Therefore, option (D) is the correct answer.
$\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}$
${{\sec }^{2}}A$
$-1$
${{\cot }^{2}}A$
${{\tan }^{2}}A$
Ans: Given expression is $\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}$.
We know that the trigonometric functions have values as:
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\cot \theta =\dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\tan \theta }$.
Substituting these values in the given expression, we get
$\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{1+\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}}{1+\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}}$
$\Rightarrow \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{\dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\cos }^{2}}A}}{\dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{{{\sin }^{2}}A}}$
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\Rightarrow \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{\dfrac{1}{{{\cos }^{2}}A}}{\dfrac{1}{{{\sin }^{2}}A}}$
$\Rightarrow \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}$
$\Rightarrow \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}={{\tan }^{2}}A$
Therefore, option (D) is the correct answer.
4. Prove the Following Identities, Where the Angles Involved are Acute Angles for Which the Expressions are Defined.
${{\left( cosec\theta -cot\theta \right)}^{2}}=\dfrac{1-\cos \theta }{1+\cos \theta }$
Ans: Given expression is ${{\left( cosec\theta -\cot \theta \right)}^{2}}=\dfrac{1-\cos \theta }{1+\cos \theta }$.
Let us consider the LHS of the given expression, we get
$LHS={{\left( cosec\theta -\cot \theta \right)}^{2}}$
Now, we know that $\cot \theta =\dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\tan \theta }$ and $cosec\theta =\dfrac{1}{\sin \theta }$.
By substituting the values, we get
$\Rightarrow {{\left( cosec\theta -\cot \theta \right)}^{2}}={{\left( \dfrac{1}{\sin \theta }-\dfrac{\cos \theta }{\sin \theta } \right)}^{2}}$
$\Rightarrow {{\left( cosec\theta -\cot \theta \right)}^{2}}={{\left( \dfrac{1-\cos \theta }{\sin \theta } \right)}^{2}}$
$\Rightarrow {{\left( cosec\theta -\cot \theta \right)}^{2}}=\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{{{\sin }^{2}}\theta }$
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\Rightarrow {{\left( cosec\theta -\cot \theta \right)}^{2}}=\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{1-{{\cos }^{2}}\theta }$
Now, by applying the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, we get
$\Rightarrow {{\left( cosec\theta -\cot \theta \right)}^{2}}=\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{\left( 1-\cos \theta \right)\left( 1+\cos \theta \right)}$
$\Rightarrow {{\left( cosec\theta -\cot \theta \right)}^{2}}=\dfrac{\left( 1-\cos \theta \right)}{\left( 1+\cos \theta \right)}$
$\Rightarrow {{\left( cosec\theta -\cot \theta \right)}^{2}}=RHS$
$\therefore {{\left( cosec\theta -\cot \theta \right)}^{2}}=\dfrac{1-\cos \theta }{1+\cos \theta }$
Hence proved
$\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A$
Ans: Given expression is $\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A$.
Let us consider the LHS of the given expression, we get
$LHS=\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}$
Now, taking LCM, we get
$\Rightarrow \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{{{\cos }^{2}}A+\left( 1+\sin A \right)\left( 1+\sin A \right)}{\left( 1+\sin A \right)\cos A}$
$\Rightarrow \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A+2\sin A+1}{\left( 1+\sin A \right)\cos A}$
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\Rightarrow \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{1+2\sin A+1}{\left( 1+\sin A \right)\cos A}$
$\Rightarrow \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2+2\sin A}{\left( 1+\sin A \right)\cos A}$
$\Rightarrow \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2\left( 1+\sin A \right)}{\left( 1+\sin A \right)\cos A}$
$\Rightarrow \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2}{\cos A}$
We know that $sec\theta =\dfrac{1}{\cos \theta }$, we get
$\Rightarrow \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A$
\[\Rightarrow \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=RHS\]
\[\therefore \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A\]
Hence proved
$\dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=1+\sec \theta cosec\theta $
Ans: Given expression is $\dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=1+\sec \theta \operatorname{cosec}\theta $.
Let us consider the LHS of the given expression, we get
$LHS=\dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }$
Now, we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\cot \theta =\dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\tan \theta }$.
By substituting the values, we get
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\left( \dfrac{\dfrac{\sin \theta }{\cos \theta }}{1-\dfrac{\cos \theta }{\sin \theta }}+\dfrac{\dfrac{\cos \theta }{\sin \theta }}{1-\dfrac{\sin \theta }{\cos \theta }} \right)\]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\left( \dfrac{\dfrac{\sin \theta }{\cos \theta }}{\dfrac{\sin \theta -\cos \theta }{\sin \theta }}+\dfrac{\dfrac{\cos \theta }{\sin \theta }}{\dfrac{\cos \theta -\sin \theta }{\cos \theta }} \right)\]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\left( \dfrac{{{\sin }^{2}}\theta }{\cos \theta \left( \sin \theta -\cos \theta \right)}+\dfrac{{{\cos }^{2}}\theta }{\sin \theta \left( \sin \theta -\cos \theta \right)} \right)\]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\dfrac{1}{\left( \sin \theta -\cos \theta \right)}\left( \dfrac{{{\sin }^{2}}\theta }{\cos \theta }+\dfrac{{{\cos }^{2}}\theta }{\sin \theta } \right)\]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\dfrac{1}{\left( \sin \theta -\cos \theta \right)}\left( \dfrac{{{\sin }^{3}}\theta -{{\cos }^{3}}\theta }{\sin \theta \cos \theta } \right)\]
Now, by applying the identity \[{{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\], we get
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\dfrac{1}{\left( \sin \theta -\cos \theta \right)}\left[ \dfrac{\left( \sin \theta -\cos \theta \right)\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta +\sin \theta \cos \theta \right)}{\sin \theta \cos \theta } \right]\]
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\dfrac{1}{\left( \sin \theta -\cos \theta \right)}\left[ \dfrac{\left( \sin \theta -\cos \theta \right)\left( 1+\sin \theta \cos \theta \right)}{\sin \theta \cos \theta } \right]\]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\dfrac{\left( 1+\sin \theta \cos \theta \right)}{\sin \theta \cos \theta }\]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\dfrac{1}{\sin \theta \cos \theta }+\dfrac{\sin \theta \cos \theta }{\sin \theta \cos \theta }\]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\dfrac{1}{\sin \theta \cos \theta }+1\]
We know that $cosec\theta =\dfrac{1}{\sin \theta }$ and $sec\theta =\dfrac{1}{\cos \theta }$, we get
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\sec \theta cosec\theta +1\]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=1+\sec \theta cosec\theta \]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=RHS\]
\[\therefore \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=1+\sec \theta cosec\theta \]
Hence proved
$\dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}$
Ans: Given expression is $\dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}$.
Let us consider the LHS of the given expression, we get
$LHS=\dfrac{1+\sec A}{\sec A}$
Now, we know that $\sec \theta =\dfrac{1}{\cos \theta }$.
By substituting the value, we get
\[\Rightarrow \dfrac{1+\sec A}{\sec A}=\dfrac{1+\dfrac{1}{\cos A}}{\dfrac{1}{\cos A}}\]
\[\Rightarrow \dfrac{1+\sec A}{\sec A}=\dfrac{\dfrac{\cos A+1}{\cos A}}{\dfrac{1}{\cos A}}\]
\[\Rightarrow \dfrac{1+\sec A}{\sec A}=\cos A+1\]
Multiply and divide by $\left( 1-\cos A \right)$, we get
\[\Rightarrow \dfrac{1+\sec A}{\sec A}=\dfrac{\left( 1+\cos A \right)\left( 1-\cos A \right)}{\left( 1-\cos A \right)}\]
Now, by applying the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, we get
\[\Rightarrow \dfrac{1+\sec A}{\sec A}=\dfrac{1-{{\cos }^{2}}A}{\left( 1-\cos A \right)}\]
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
\[\Rightarrow \dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{\left( 1-\cos A \right)}\]
\[\Rightarrow \dfrac{1+\sec A}{\sec A}=RHS\]
\[\therefore \dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}\]
Hence proved
$\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=cosecA+\cot A$
Ans: Given expression is $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=cosecA+\cot A$.
Now, let us consider the LHS of the given expression, we get
$LHS=\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}$
Dividing numerator and denominator by $\sin A$, we get
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{\dfrac{\cos A}{\sin A}-\dfrac{\sin A}{\sin A}+\dfrac{1}{\sin A}}{\dfrac{\cos A}{\sin A}+\dfrac{\sin A}{\sin A}-\dfrac{1}{\sin A}}$
Now, we know that $\cot \theta =\dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\tan \theta }$ and $cosec\theta =\dfrac{1}{\sin \theta }$, we get
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{\cot A-1+\operatorname{cosec}A}{\cot A+1-\operatorname{cosec}A}$
Now, by applying the identity ${{\operatorname{cosec}}^{2}}A=1+{{\cot }^{2}}A$, substitute $1={{\cot }^{2}}A-{{\operatorname{cosec}}^{2}}A$, we get
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{\cot A-\left( {{\cot }^{2}}A-{{\operatorname{cosec}}^{2}}A \right)+\operatorname{cosec}A}{\cot A+{{\cot }^{2}}A-{{\operatorname{cosec}}^{2}}A-\operatorname{cosec}A}$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{\cot A-{{\cot }^{2}}A+{{\operatorname{cosec}}^{2}}A+\operatorname{cosec}A}{\cot A+{{\cot }^{2}}A-{{\operatorname{cosec}}^{2}}A-\operatorname{cosec}A}$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{{{\left( \cot A-1+\operatorname{cosec}A \right)}^{2}}}{{{\cot }^{2}}A-1+{{\operatorname{cosec}}^{2}}A+2\operatorname{cosec}A}$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{{{\left( \cot A-1+\operatorname{cosec}A \right)}^{2}}}{{{\cot }^{2}}A-1+{{\operatorname{cosec}}^{2}}A+2\operatorname{cosec}A}$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{2{{\operatorname{cosec}}^{2}}A+2\cot A\operatorname{cosec}A-2\cot A-2\operatorname{cosec}A}{{{\cot }^{2}}A-1+{{\operatorname{cosec}}^{2}}A+2\operatorname{cosec}A}$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{2\operatorname{cosec}A\left( \cot A-\operatorname{cosec}A \right)-2\left( \cot A-\operatorname{cosec}A \right)}{{{\cot }^{2}}A-1+{{\operatorname{cosec}}^{2}}A+2\operatorname{cosec}A}$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{\left( 2\operatorname{cosec}A-2 \right)\left( \cot A-\operatorname{cosec}A \right)}{1-1+2\operatorname{cosec}A}$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{\left( 2\operatorname{cosec}A-2 \right)\left( \cot A-\operatorname{cosec}A \right)}{2\operatorname{cosec}A}$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec}A+\cot A$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=RHS$
$\therefore \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec}A+\cot A$
Hence proved
$\sqrt{\dfrac{1+\sin A}{1-\sin A}}=\sec A+\tan A$
Ans: Given expression is $\sqrt{\dfrac{1+\sin A}{1-\sin A}}=\sec A+\tan A$.
Let us consider the LHS of the given expression, we get
$LHS=\sqrt{\dfrac{1+\sin A}{1-\sin A}}$
Now, multiply and divide the expression by $\sqrt{1+\sin A}$, we get
$\Rightarrow \sqrt{\dfrac{1+\sin A}{1-\sin A}}=\sqrt{\dfrac{\left( 1+\sin A \right)\left( 1+\sin A \right)}{\left( 1-\sin A \right)\left( 1+\sin A \right)}}$
Now, by applying the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, we get
\[\Rightarrow \sqrt{\dfrac{1+\sin A}{1-\sin A}}=\sqrt{\dfrac{{{\left( 1+\sin A \right)}^{2}}}{1-{{\sin }^{2}}A}}\]
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
\[\Rightarrow \sqrt{\dfrac{1+\sin A}{1-\sin A}}=\dfrac{1+\sin A}{\sqrt{{{\cos }^{2}}A}}\]
\[\Rightarrow \sqrt{\dfrac{1+\sin A}{1-\sin A}}=\dfrac{1+\sin A}{\cos A}\]
\[\Rightarrow \sqrt{\dfrac{1+\sin A}{1-\sin A}}=\dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A}\]
\[\Rightarrow \sqrt{\dfrac{1+\sin A}{1-\sin A}}=\sec A+\tan A\]
\[\Rightarrow \sqrt{\dfrac{1+\sin A}{1-\sin A}}=RHS\]
$\therefore \sqrt{\dfrac{1+\sin A}{1-\sin A}}=\sec A+\tan A$
Hence proved
$\dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\tan \theta $
Ans: Given expression is $\dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\tan \theta $.
Let us consider the LHS of the given expression, we get
$LHS=\dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }$
Taking common terms out, we get
$\Rightarrow \dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\dfrac{\sin \theta \left( 1-2{{\sin }^{2}}\theta \right)}{\cos \theta \left( 2{{\cos }^{2}}\theta -1 \right)}$
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\Rightarrow \dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\dfrac{\sin \theta \left( 1-2{{\sin }^{2}}\theta \right)}{\cos \theta \left( 2\left( 1-2{{\sin }^{2}}\theta \right)-1 \right)}$
$\Rightarrow \dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\dfrac{\sin \theta \left( 1-2{{\sin }^{2}}\theta \right)}{\cos \theta \left( 2-2{{\sin }^{2}}\theta -1 \right)}$
$\Rightarrow \dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\dfrac{\sin \theta \left( 1-2{{\sin }^{2}}\theta \right)}{\cos \theta \left( 1-2{{\sin }^{2}}\theta \right)}$
$\Rightarrow \dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\dfrac{\sin \theta }{\cos \theta }$
$\Rightarrow \dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\tan \theta $
$\Rightarrow \dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=RHS$
$\therefore \dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\tan \theta $
Hence proved
${{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+secA \right)}^{2}}=7+{{\tan }^{2}}A+{{\cot }^{2}}A$
Ans: Given expression is ${{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}=7+{{\tan }^{2}}A+{{\cot }^{2}}A$.
Let us consider the LHS of the given expression, we get
$LHS={{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}$
Now, by applying the identity \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get
\[\Rightarrow {{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}={{\sin }^{2}}A+cosec{{A}^{2}}+2\sin AcosecA+{{\cos }^{2}}A+{{\sec }^{2}}A+2\cos A\sec A\]\[\Rightarrow {{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}={{\sin }^{2}}A+{{\cos }^{2}}A+cosec{{A}^{2}}+{{\sec }^{2}}A+2\sin AcosecA+2\cos A\sec A\]We know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, $cosec\theta =\dfrac{1}{\sin \theta }$ and $sec\theta =\dfrac{1}{\cos \theta }$, we get
\[\Rightarrow {{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}=1+cose{{c}^{2}}\theta +{{\sec }^{2}}\theta +2\sin A\dfrac{1}{\sin A}+2\cos A\dfrac{1}{\cos A}\]
\[\Rightarrow {{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}=1+\left( 1+{{\cot }^{2}}A+1+{{\tan }^{2}}A \right)+2+2\]
\[\Rightarrow {{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}=7+{{\tan }^{2}}A+{{\cot }^{2}}A\]
\[\Rightarrow {{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}=RHS\]
\[\therefore {{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}=7+{{\tan }^{2}}A+{{\cot }^{2}}A\]
Hence proved
$\left( cosecA-\sin A \right)\left( \sec A-\cos A \right)=\dfrac{1}{\tan A+\cot A}$
Ans: Given expression is $\left( cosecA-\sin A \right)\left( \sec A-\cos A \right)=\dfrac{1}{\tan A+\cot A}$.
Let us consider the LHS of the given expression, we get
$LHS=\left( cosecA-\sin A \right)\left( \sec A-\cos A \right)$
We know that $cosec\theta =\dfrac{1}{\sin \theta }$ and $sec\theta =\dfrac{1}{\cos \theta }$, we get
$\Rightarrow \left( cosecA-\sin A \right)\left( \sec A-\cos A \right)=\left( \dfrac{1}{\sin A}-\sin A \right)\left( \dfrac{1}{\cos A}-\cos A \right)$
$\Rightarrow \left( cosecA-\sin A \right)\left( \sec A-\cos A \right)=\left( \dfrac{1-{{\sin }^{2}}A}{\sin A} \right)\left( \dfrac{1-{{\cos }^{2}}A}{\cos A} \right)$
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\Rightarrow \left( cosecA-\sin A \right)\left( \sec A-\cos A \right)=\left( \dfrac{{{\cos }^{2}}A}{\sin A} \right)\left( \dfrac{{{\sin }^{2}}A}{\cos A} \right)$
$\Rightarrow \left( cosecA-\sin A \right)\left( \sec A-\cos A \right)=\sin A\cos A$
Now, consider the RHS of the given expression, we get
$RHS=\dfrac{1}{\tan A+\cot A}$
Now, we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\cot \theta =\dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\tan \theta }$.
$\Rightarrow \dfrac{1}{\tan A+\cot A}=\dfrac{1}{\dfrac{\sin A}{\cos A}+\dfrac{\cos A}{\sin A}}$
$\Rightarrow \dfrac{1}{\tan A+\cot A}=\dfrac{1}{\dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{\sin A\cos A}}$
$\Rightarrow \dfrac{1}{\tan A+\cot A}=\dfrac{\sin A\cos A}{{{\sin }^{2}}A+{{\cos }^{2}}A}$
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\Rightarrow \dfrac{1}{\tan A+\cot A}=\sin A\cos A$
Here, we get LHS=RHS
$\therefore \left( cosecA-\sin A \right)\left( \sec A-\cos A \right)=\dfrac{1}{\tan A+\cot A}$
Hence proved
$\left( \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A} \right)={{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}$
Ans: Given expression is $\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}={{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}$.
Let us consider the LHS of the given expression, we get
$LHS=\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}$
By applying the identities ${{\sec }^{2}}A=1+{{\tan }^{2}}A$ and ${{\operatorname{cosec}}^{2}}A=1+{{\cot }^{2}}A$, we get
$\Rightarrow \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{se{{c}^{2}}A}{{{\operatorname{cosec}}^{2}}A}$
We know that $cosec\theta =\dfrac{1}{\sin \theta }$ and $sec\theta =\dfrac{1}{\cos \theta }$, we get
$\Rightarrow \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{\dfrac{1}{{{\cos }^{2}}A}}{\dfrac{1}{{{\sin }^{2}}A}}$
$\Rightarrow \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}$
$\Rightarrow \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}={{\tan }^{2}}A$
Now, consider the RHS of the given expression, we get
$RHS={{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}$
Now, we know that $\cot \theta =\dfrac{1}{\tan \theta }$, we get
$\Rightarrow {{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}={{\left( \dfrac{1-\tan A}{1-\dfrac{1}{\tan A}} \right)}^{2}}$
$\Rightarrow {{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}={{\left( \dfrac{1-\tan A}{\dfrac{\tan A-1}{\tan A}} \right)}^{2}}$
$\Rightarrow {{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}={{\left( -\tan A \right)}^{2}}$
$\Rightarrow {{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}={{\tan }^{2}}A$
Here, we get LHS=RHS
$\therefore \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}={{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}$
Hence proved
Conclusion
Exercise 8.3 Class 10 of Maths Chapter 8 - Introduction to Trigonometry, is crucial for a solid foundation in math that focuses on applying trigonometric ratios to solve various problems related to heights and distances. On average, you can expect about 1-2 questions from Ex 8.3 Class 10 in the exams.
Vedantu's NCERT solutions go beyond the basics to solidify your grasp of trigonometric ratios (sine, cosine, tangent, etc.). The solutions will equip you with techniques to simplify expressions involving trigonometric ratios using the identities.
Regular practice with NCERT solutions provided by platforms like Vedantu can enhance comprehension and problem-solving skills. Pay attention to the step-by-step solutions provided, grasp the underlying principles, and ensure clarity on the concepts before moving forward.
Class 10 Maths Chapter 8: Exercises Breakdown
Chapter 8 Introduction to Trigonometry All Exercises in PDF Format | |
11 Questions and Solutions | |
4 Questions and Solutions | |
CBSE Class 10 Maths Chapter 8 Other Study Materials
S.No. | Important Links for Chapter 8 Introduction to Trigonometry |
1 | Class 10 Chapter 8: Introduction to Trigonometry Revision Notes |
2 | Class 10 Chapter 8: Introduction to Trigonometry Important Questions |
3 | |
4 | Class 10 Chapter 8: Introduction to Trigonometry NCERT Exemplar Solution |
Chapter-Specific NCERT Solutions for Class 10 Maths
Given below are the chapter-wise NCERT Solutions for Class 10 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.
S.No. | NCERT Solutions Class 10 Chapter-wise Maths PDF |
1 | |
2 | |
3 | Chapter 3 - Pair Of Linear Equations In Two Variables Solutions |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | |
14 |
Study Resources for Class 10 Maths
For complete preparation of Maths for CBSE Class 10 board exams, check out the following links for different study materials available at Vedantu.
FAQs on Class 10 Maths Chapter 8 Exercise 8.3 Trigonometry NCERT Solutions
1. What type of problem patterns appear in Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry?
Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry mainly includes ratio-based trigonometric problems, which are practised accurately using NCERT Solutions on Vedantu.
2. How does Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry test conceptual clarity in exams?
In Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry, questions test correct ratio selection and angle understanding, both of which are reinforced through step-aligned solutions on Vedantu.
3. Which calculation errors are frequently seen in Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry?
In Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry, frequent errors include incorrect simplification and ratio substitution, which can be corrected by cross-checking answers on Vedantu.
4. Does Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry require memorisation or application?
Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry focuses more on application of ratios than memorisation, as shown in NCERT-based solutions on Vedantu.
5. How much working is expected in Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry answers?
For Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry, stepwise working is expected, and the solution format on Vedantu reflects proper CBSE presentation.
6. Can Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry NCERT Solutions PDF help in time-bound practice?
Yes, the Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry NCERT Solutions PDF from Vedantu can be used offline for timed problem-solving practice.
7. How does Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry prepare students for later trigonometry chapters?
Practising Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry builds a strong ratio base, as reinforced through NCERT Solutions on Vedantu.
8. Are mixed-ratio questions common in Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry?
Yes, Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry often includes mixed-ratio problems, and the solved examples on Vedantu show correct handling.
9. What role does simplification play in Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry?
In Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry, simplification plays a key role, and errors can be minimised by following NCERT-aligned steps on Vedantu.
10. Why is consistent practice important for Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry?
Consistent practice of Class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry improves speed and accuracy, which is supported by structured solutions on Vedantu.






































