Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 9 Maths Chapter 2 Polynomials Exercise 2.4 (2025-26)

ffImage
banner
widget title icon
Latest Updates

Class 9 Maths Exercise 2.4 – Step-by-Step Solutions

Class 9 Maths Chapter 2 Exercise 2.4 focuses on the factorisation of polynomials using methods such as splitting the middle term and grouping. These Class 9 Maths Chapter 2 Exercise 2.4 solutions help students understand how to break down quadratic and cubic expressions correctly.

toc-symbolTable of Content
toggle-arrow


The Exercise 2.4 Class 9 answers are explained step by step, making each method easy to follow and apply. Practising Ex 2.4 Class 9 helps students avoid common mistakes and improve accuracy while solving polynomial questions.


All Class 9th Maths Chapter 2 Exercise 2.4 solutions are prepared by Vedantu’s expert teachers and follow the latest NCERT guidelines. Students can download the free PDF to practise confidently and strengthen their understanding of polynomials.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
Watch videos on

NCERT Solutions For Class 9 Maths Chapter 2 Polynomials Exercise 2.4 (2025-26)
Previous
Next
Vedantu 9&10
Subscribe
Download Notes
iconShare
Polynomials in One Shot | CBSE Class 9 Maths Chapter 2 | CBSE lX - One Shot | Vedantu Class 9 and 10
5.2K likes
112.6K Views
4 years ago
Vedantu 9&10
Subscribe
Download Notes
iconShare
Polynomials L-2 | Factor Theorem and Algebraic Identities | CBSE Class 9 Math - Umang 2021 | Vedantu
7K likes
137.6K Views
4 years ago

Class 9 Maths Chapter 2 Exercise 2.4 solutions

1. Use suitable identities to find the following products:

  1. (x+4)(x+10)

Ans: Using the identity, \[\left( x+a \right)\left( x+b \right)={{x}^{2}}+\left( a+b \right)x+ab\]

Here we have, \[a=4,b=10\]

We get,
\[ \left( x+4 \right)\left( x+10 \right)={{x}^{2}}+\left( 4+10 \right)x+\left( 4 \right)\left( 10 \right) \]

\[ ={{x}^{2}}+14x+40 \]


  1. (x+8)(x-10)

Ans: Using the identity, \[\left( x+a \right)\left( x+b \right)={{x}^{2}}+\left( a+b \right)x+ab\]

Here we have, \[a=8,b=-10\]

We get,
$ \left( x+8 \right)\left( x+\left( -10 \right) \right)={{x}^{2}}+\left( 8+\left( -10 \right) \right)x+\left( 8 \right)\left( -10 \right) $

 $ \left( x+8 \right)\left( x-10 \right)={{x}^{2}}+\left( 8-10 \right)x-80 $

 $ ={{x}^{2}}-2x-80 $


  1. ( 3x+4)( 3x-5)

Ans: Using the identity, \[\left( x+a \right)\left( x+b \right)={{x}^{2}}+\left( a+b \right)x+ab\]

Here we have, \[a=4,b=-5\]

We get,
$ \left( 3x+4 \right)\left( 3x+\left( -5 \right) \right)={{\left( 3x \right)}^{2}}+\left( 4+\left( -5 \right) \right)3x+\left( 4 \right)\left( -5 \right) $

$ \left( 3x+4 \right)\left( 3x-5 \right)=9{{x}^{2}}+\left( 4-5 \right)3x-20 $

$ =9{{x}^{2}}-3x-20 $


  1. $\mathbf{(y^{2}+\frac{3}{2})(y^{2}-\frac{3}{2})}$

Ans: Using the identity, \[\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}}\]

Here we have, \[x={{y}^{2}},y=\dfrac{3}{2}\]

We get,
$ \left( {{y}^{2}}+\dfrac{3}{2} \right)\left( {{y}^{2}}-\dfrac{3}{2} \right)={{\left( {{y}^{2}} \right)}^{2}}-{{\left( \dfrac{3}{2} \right)}^{2}} $

$  ={{y}^{4}}-\dfrac{9}{4} $


  1. (3-2x)(3+2x)

Ans: Using the identity, \[\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}}\]

Here we have, \[x=3,y=2x\]

We get,
$ \left( 3+2x \right)\left( 3-2x \right)={{\left( 3 \right)}^{2}}-{{\left( 2x \right)}^{2}} $

$  =9-4{{x}^{2}} $ 


2. Evaluate the following products without multiplying directly:

  1. \[\mathbf{103\times 107}\]

Ans: \[103\times 107=\left( 100+3 \right)\times \left( 100+7 \right)\]

By using the identity, \[\left( x+a \right)\left( x+b \right)={{x}^{2}}+\left( a+b \right)x+ab\]

Here we have, \[x=100,~~a=3,~~b=7\]

We get,

$ \left( 100+3 \right)\left( 100+7 \right)={{\left( 100 \right)}^{2}}+\left( 3+7 \right)100+\left( 3 \right)\left( 7 \right) $

$ \left( 103 \right)\times \left( 107 \right)=10000+1000+21 $

$ =11021 $


  1. \[\mathbf{95\times 96}\]

Ans: \[95\times 96=\left( 100-5 \right)\times \left( 100-4 \right)\]

By using the identity, \[\left( x-a \right)\left( x-b \right)={{x}^{2}}-\left( a+b \right)x+ab\]

Here we have, \[x=100,~~a=5,~~b=4\]

We get,
$ \left( 100-5 \right)\left( 100-4 \right)={{\left( 100 \right)}^{2}}-\left( 5+4 \right)100+\left( 5 \right)\left( 4 \right) $

$ \left( 95 \right)\times \left( 96 \right)=10000-900+20 $

$ =9120 $


  1. \[\mathbf{104\times 96}\]

Ans: \[104\times 96=\left( 100+4 \right)\times \left( 100-4 \right)\]

By using the identity, \[\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}}\]

Here we have, \[x=100,~~y=4\]

We get,
$\left( 100+4 \right)\left( 100-4 \right)={{\left( 100 \right)}^{2}}-{{\left( 4 \right)}^{2}} $

$ \left( 104 \right)\times \left( 96 \right)=10000-16 $

$ =9984 $


3. Factorize the following using appropriate identities:

  1. \[\mathbf{9{{x}^{2}}+6xy+{{y}^{2}}}\]

Ans: \[9{{x}^{2}}+6xy+{{y}^{2}}={{\left( 3x \right)}^{2}}+2\left( 3x \right)\left( y \right)+{{\left( y \right)}^{2}}\]

By using the identity, \[{{x}^{2}}+2xy+{{y}^{2}}={{\left( x+y \right)}^{2}}\]

Here, \[x=3x,~~y=y\]

$ 9{{x}^{2}}+6xy+{{y}^{2}}={{\left( 3x \right)}^{2}}+2\left( 3x \right)\left( y \right)+{{\left( y \right)}^{2}} $

$ ={{\left( 3x+y \right)}^{2}} $

$ =\left( 3x+y \right)\left( 3x+y \right) $


  1. \[\mathbf{4{{y}^{2}}-4y+1}\]

Ans: \[4{{y}^{2}}-4y+1={{\left( 2y \right)}^{2}}-2\left( 2y \right)\left( 1 \right)+{{\left( 1 \right)}^{2}}\]

By using the identity, \[{{x}^{2}}-2xy+{{y}^{2}}={{\left( x-y \right)}^{2}}\]

Here, \[x=2y,~~y=1\]

$ 4{{y}^{2}}-4y+1={{\left( 2y \right)}^{2}}-2\left( 2y \right)\left( 1 \right)+{{\left( 1 \right)}^{2}} $ 

$ ={{\left( 2y-1 \right)}^{2}} $

$ =\left( 2y-1 \right)\left( 2y-1 \right) $


  1. \[\mathbf{{{x}^{2}}-\dfrac{{{y}^{2}}}{100}}\]

Ans: \[{{x}^{2}}-\dfrac{{{y}^{2}}}{100}={{\left( x \right)}^{2}}-{{\left( \dfrac{y}{10} \right)}^{2}}\]

By using the identity, \[{{x}^{2}}-{{y}^{2}}=\left( x+y \right)\left( x-y \right)\]

Here, \[x=x,~~y=\dfrac{y}{10}\]

$ {{x}^{2}}-\dfrac{{{y}^{2}}}{100}={{\left( x \right)}^{2}}-{{\left( \dfrac{y}{10} \right)}^{2}} $

$ =\left( x-\dfrac{y}{10} \right)\left( x+\dfrac{y}{10} \right) $


4. Expand each of the following, using suitable identities:

  1. \[\mathbf{{{\left( x+2y+4z \right)}^{2}}}\]

Ans: By using the identity, \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\]

Here, \[x=x,~~y=2y,~~z=4z\]

$ {{\left( x+2y+4z \right)}^{2}}={{\left( x \right)}^{2}}+{{\left( 2y \right)}^{2}}+{{\left( 4z \right)}^{2}}+2\left( x \right)\left( 2y \right)+2\left( 2y \right)\left( 4z \right)+2\left( 4z \right)\left( x \right) $

$={{x}^{2}}+4{{y}^{2}}+16{{z}^{2}}+4xy+16yz+8xz $


  1. \[\mathbf{{{\left( 2x-y+z \right)}^{2}}}\]

Ans: By using the identity, \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\]

Here, \[x=2x,~~y=-y,~~z=z\]

$ {{\left( 2x-y+z \right)}^{2}}={{\left( 2x \right)}^{2}}+{{\left( -y \right)}^{2}}+{{\left( z \right)}^{2}}+2\left( 2x \right)\left( -y \right)+2\left( -y \right)\left( z \right)+2\left( z \right)\left( 2x \right) $

 $ =4{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4xy-2yz+4xz $


  1. \[\mathbf{{{\left( -2x+3y+2z \right)}^{2}}}\]

Ans: By using the identity, \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\]

Here, \[x=-2x,~~y=3y,~~z=2z\]

$ {{\left( -2x+3y+2z \right)}^{2}}={{\left( -2x \right)}^{2}}+{{\left( 3y \right)}^{2}}+{{\left( 2z \right)}^{2}}+2\left( -2x \right)\left( 3y \right)+2\left( 3y \right)\left( 2z \right)+2\left( 2z \right)\left( -2x \right) $

$  =4{{x}^{2}}+9{{y}^{2}}+4{{z}^{2}}-12xy+12yz-8xz $


  1. \[\mathbf{{{\left( 3a-7b-c \right)}^{2}}}\]

Ans: By using the identity, \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\]

Here, \[x=3a,~~y=-7b,~~z=-c\]

$ {{\left( 3a-7b-c \right)}^{2}}={{\left( 3a \right)}^{2}}+{{\left( -7b \right)}^{2}}+{{\left( -c \right)}^{2}}+2\left( 3a \right)\left( -7b \right)+2\left( -7b \right)\left( -c \right)+2\left( -c \right)\left( 3a \right) $

$ =9{{a}^{2}}+49{{b}^{2}}+{{c}^{2}}-42ab+14bc-6ca $


  1. \[\mathbf{{{\left( -2x+5y-3z \right)}^{2}}}\]

Ans: By using the identity, \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\]

Here, \[x=-2x,~~y=5y,~~z=-3z\]

$ {{\left( -2x+5y-3z \right)}^{2}}={{\left( -2x \right)}^{2}}+{{\left( 5y \right)}^{2}}+{{\left( -3z \right)}^{2}}+2\left( -2x \right)\left( 5y \right)+2\left( 5y \right)\left( -3z \right)+2\left( -3z \right)\left( -2x \right) $

$  =4{{x}^{2}}+25{{y}^{2}}+9{{z}^{2}}-20xy-30yz+12xz $


  1. \[\mathbf{{{\left( \dfrac{1}{4}a-\dfrac{1}{2}b+1 \right)}^{2}}}\]

Ans: By using the identity, \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\]

Here, \[x=\dfrac{1}{4}a,~~y=-\dfrac{1}{2}b,~~z=1\]

$ {{\left( \dfrac{1}{4}a-\dfrac{1}{2}b+1 \right)}^{2}}={{\left( \dfrac{1}{4}a \right)}^{2}}+{{\left( -\dfrac{1}{2}b \right)}^{2}}+{{\left( 1 \right)}^{2}}+2\left( \dfrac{1}{4}a \right)\left( -\dfrac{1}{2}b \right)+2\left( -\dfrac{1}{2}b \right)\left( 1 \right)+2\left( 1 \right)\left( \dfrac{1}{4}a \right) $

$ =\dfrac{1}{16}{{a}^{2}}+\dfrac{1}{4}{{b}^{2}}+1-\dfrac{1}{4}ab-b+\dfrac{1}{2}a $


5. Factorise:

  1. \[\mathbf{4{{x}^{2}}+9{{y}^{2}}+16{{z}^{2}}+12xy-24yz-16xz}\]

Ans: By using the identity, \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\]

We can see that, \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx={{\left( x+y+z \right)}^{2}}\]

$ 4{{x}^{2}}+9{{y}^{2}}+16{{z}^{2}}+12xy-24yz-16xz={{\left( 2x \right)}^{2}}+{{\left( 3y \right)}^{2}}+{{\left( -4z \right)}^{2}}+2\left( 2x \right)\left( 3y \right)+2\left( 3y \right)\left( -4z \right)+2\left( -4z \right)\left( 2x \right) $

$ ={{\left( 2x+3y-4z \right)}^{2}} $

$ =\left( 2x+3y-4z \right)\left( 2x+3y-4z \right) $


  1. \[\mathbf{2{{x}^{2}}+{{y}^{2}}+8{{z}^{2}}-2\sqrt{2}xy+4\sqrt{2}yz-8xz}\]

Ans: By using the identity, \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\]

We can see that, \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx={{\left( x+y+z \right)}^{2}}\]

$ 2{{x}^{2}}+{{y}^{2}}+8{{z}^{2}}-2\sqrt{2}xy+4\sqrt{2}yz-8xz={{\left( -\sqrt{2}x \right)}^{2}}+{{\left( y \right)}^{2}}+{{\left( 2\sqrt{2}z \right)}^{2}}+2\left( -\sqrt{2}x \right)\left( y \right)+2\left( y \right)\left( 2\sqrt{2}z \right)+2\left( 2\sqrt{2}z \right)\left( -\sqrt{2}x \right) $

$ ={{\left( -\sqrt{2}x+y-2\sqrt{2}z \right)}^{2}} $

$ =\left( -\sqrt{2}x+y-2\sqrt{2}z \right)\left( -\sqrt{2}x+y-2\sqrt{2}z \right) $


6. Write the following cubes in expanded form:

  1. \[\mathbf{{{\left( 2x+1 \right)}^{3}}}\]

Ans: By using the identity, \[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right)\]

$ {{\left( 2x+1 \right)}^{3}}={{\left( 2x \right)}^{3}}+{{\left( 1 \right)}^{3}}+3\left( 2x \right)\left( 1 \right)\left( 2x+1 \right) $

$ =8{{x}^{3}}+1+6x\left( 2x+1 \right) $

$ =8{{x}^{3}}+1+12{{x}^{2}}+6x $

$ =8{{x}^{3}}+12{{x}^{2}}+6x+1 $


  1. \[\mathbf{{{\left( 2a-3b \right)}^{3}}}\]

Ans: By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

$ {{\left( 2a-3b \right)}^{3}}={{\left( 2a \right)}^{3}}-{{\left( 3b \right)}^{3}}-3\left( 2a \right)\left( 3b \right)\left( 2a-3b \right) $

$ =8{{x}^{3}}-27{{b}^{3}}-18ab\left( 2a-3b \right) $

$ =8{{x}^{3}}-27{{b}^{3}}-36{{a}^{2}}b+54a{{b}^{2}} $


  1. \[\mathbf{{{\left( \dfrac{3}{2}x+1 \right)}^{3}}}\]

Ans: By using the identity, \[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right)\]

$ {{\left( \dfrac{3}{2}x+1 \right)}^{3}}={{\left( \dfrac{3}{2}x \right)}^{3}}+{{\left( 1 \right)}^{3}}+3\left( \dfrac{3}{2}x \right)\left( 1 \right)\left( \dfrac{3}{2}x+1 \right) $ 

$ =\dfrac{27}{8}{{x}^{3}}+1+\dfrac{9}{2}x\left( \dfrac{3}{2}x+1 \right) $

$ =\dfrac{27}{8}{{x}^{3}}+1+\dfrac{27}{4}{{x}^{2}}+\dfrac{9}{2}x $ 

$ =\dfrac{27}{8}{{x}^{3}}+\dfrac{27}{4}{{x}^{2}}+\dfrac{9}{2}x+1 $


  1. \[\mathbf{{{\left( x-\dfrac{2}{3}y \right)}^{3}}}\]

Ans: By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

$ {{\left( x-\dfrac{2}{3}y \right)}^{3}}={{\left( x \right)}^{3}}-{{\left( \dfrac{2}{3}y \right)}^{3}}-3\left( x \right)\left( \dfrac{2}{3}y \right)\left( x-\dfrac{2}{3}y \right) $

$  ={{x}^{3}}-\dfrac{8}{27}{{y}^{3}}-2xy\left( x-\dfrac{2}{3}y \right) $

$ ={{x}^{3}}-\dfrac{8}{27}{{y}^{3}}-2{{x}^{2}}y+\dfrac{4}{3}x{{y}^{2}} $


7. Evaluate the following using suitable identities:

  1. \[\mathbf{{{\left( 99 \right)}^{3}}}\]

Ans: Here we can write \[{{\left( 99 \right)}^{3}}\] as \[{{\left( 100-1 \right)}^{3}}\]

By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

$ {{\left( 100-1 \right)}^{3}}={{\left( 100 \right)}^{3}}-{{\left( 1 \right)}^{3}}-3\left( 100 \right)\left( 1 \right)\left( 100-1 \right) $

$ =1000000-1-300\left( 100-1 \right) $

$ =1000000-1-30000+300 $

$ =970299 $


  1. \[\mathbf{{{\left( 102 \right)}^{3}}}\]

Ans: Here we can write \[{{\left( 102 \right)}^{3}}\] as \[{{\left( 100+2 \right)}^{3}}\]

By using the identity, \[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right)\]

$ {{\left( 100+2 \right)}^{3}}={{\left( 100 \right)}^{3}}+{{\left( 2 \right)}^{3}}+3\left( 100 \right)\left( 2 \right)\left( 100+2 \right) $

$  =1000000+8+600\left( 100+2 \right) $

$ =1000000+8+60000+1200 $

$ =1061208 $


  1. \[\mathbf{{{\left( 998 \right)}^{3}}}\]

Ans: Here we can write \[{{\left( 998 \right)}^{3}}\] as \[{{\left( 1000-2 \right)}^{3}}\]

By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

$ {{\left( 1000-2 \right)}^{3}}={{\left( 1000 \right)}^{3}}-{{\left( 2 \right)}^{3}}-3\left( 1000 \right)\left( 2 \right)\left( 1000-2 \right) $

 $ =1000000000-8-6000\left( 1000-2 \right) $

 $ =1000000000-8-6000000+12000 $

 $ =994011992 $


8. Factorise each of the following:

  1. \[\mathbf{8{{a}^{3}}+{{b}^{3}}+12{{a}^{2}}b+6a{{b}^{2}}}\]

Ans: Here we can write \[8{{a}^{3}}+{{b}^{3}}+12{{a}^{2}}b+6a{{b}^{2}}\] as 

\[{{\left( 2a \right)}^{3}}+{{\left( b \right)}^{3}}+3{{\left( 2a \right)}^{2}}\left( b \right)+3\left( 2a \right){{\left( b \right)}^{2}}\]

By using the identity, \[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right)\]

Here, \[x=2a,~~y=b\]

$ 8{{a}^{3}}+{{b}^{3}}+12{{a}^{2}}b+6a{{b}^{2}}={{\left( 2a \right)}^{3}}+{{\left( b \right)}^{3}}+3{{\left( 2a \right)}^{2}}\left( b \right)+3\left( 2a \right){{\left( b \right)}^{2}} $

 $ ={{\left( 2a+b \right)}^{3}} $

 $ =\left( 2a+b \right)\left( 2a+b \right)\left( 2a+b \right) $


  1. \[\mathbf{8{{a}^{3}}-{{b}^{3}}-12{{a}^{2}}b+6a{{b}^{2}}}\]

Ans: Here we can write \[8{{a}^{3}}-{{b}^{3}}-12{{a}^{2}}b+6a{{b}^{2}}\] as 

\[{{\left( 2a \right)}^{3}}-{{\left( b \right)}^{3}}-3{{\left( 2a \right)}^{2}}\left( b \right)+3\left( 2a \right){{\left( b \right)}^{2}}\]

By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

Here, \[x=2a,~~y=b\]

$ 8{{a}^{3}}-{{b}^{3}}-12{{a}^{2}}b+6a{{b}^{2}}={{\left( 2a \right)}^{3}}-{{\left( b \right)}^{3}}-3{{\left( 2a \right)}^{2}}\left( b \right)+3\left( 2a \right){{\left( b \right)}^{2}} $

 $ ={{\left( 2a-b \right)}^{3}} $

 $ =\left( 2a-b \right)\left( 2a-b \right)\left( 2a-b \right) $


  1. \[\mathbf{27-125{{a}^{3}}-135a+225{{a}^{2}}}\]

Ans: Here we can write \[27-125{{a}^{3}}-135a+225{{a}^{2}}\] as 

\[{{\left( 3 \right)}^{3}}-{{\left( 5a \right)}^{3}}-3{{\left( 3 \right)}^{2}}\left( 5a \right)+3\left( 3 \right){{\left( 5a \right)}^{2}}\]

By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

Here, \[x=3,~~y=5a\]

$ 27-125{{a}^{3}}-135a+225{{a}^{2}}={{\left( 3 \right)}^{3}}-{{\left( 5a \right)}^{3}}-3{{\left( 3 \right)}^{2}}\left( 5a \right)+3\left( 3 \right){{\left( 5a \right)}^{2}} $

 $ ={{\left( 3-5a \right)}^{3}} $

 $ =\left( 3-5a \right)\left( 3-5a \right)\left( 3-5a \right) $


  1. \[\mathbf{64{{a}^{3}}-27{{b}^{3}}-144{{a}^{2}}b+108a{{b}^{2}}}\]

Ans: Here we can write \[64{{a}^{3}}-27{{b}^{3}}-144{{a}^{2}}b+108a{{b}^{2}}\] as 

\[{{\left( 4a \right)}^{3}}-{{\left( 3b \right)}^{3}}-3{{\left( 4a \right)}^{2}}\left( 3b \right)+3\left( 4a \right){{\left( 3b \right)}^{2}}\]

By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

Here, \[x=4a,~~y=3b\]

$ 64{{a}^{3}}-27{{b}^{3}}-144{{a}^{2}}b+108a{{b}^{2}}={{\left( 4a \right)}^{3}}-{{\left( 3b \right)}^{3}}-3{{\left( 4a \right)}^{2}}\left( 3b \right)+3\left( 4a \right){{\left( 3b \right)}^{2}} $ 

$ ={{\left( 4a-3b \right)}^{3}} $

$ =\left( 4a-3b \right)\left( 4a-3b \right)\left( 4a-3b \right) $


  1. \[\mathbf{27{{p}^{3}}-\dfrac{1}{216}-\dfrac{9}{2}{{p}^{2}}+\dfrac{1}{4}p}\]

Ans: Here we can write \[27{{p}^{3}}-\dfrac{1}{216}-\dfrac{9}{2}{{p}^{2}}+\dfrac{1}{4}p\] as 

\[{{\left( 3p \right)}^{3}}-{{\left( \dfrac{1}{6} \right)}^{3}}-3{{\left( 3p \right)}^{2}}\left( \dfrac{1}{6} \right)+3\left( 3p \right){{\left( \dfrac{1}{6} \right)}^{2}}\]

By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

Here, \[x=3p,~~y=\dfrac{1}{6}\]

$ 27{{p}^{3}}-\dfrac{1}{216}-\dfrac{9}{2}{{p}^{2}}+\dfrac{1}{4}p={{\left( 3p \right)}^{3}}-{{\left( \dfrac{1}{6} \right)}^{3}}-3{{\left( 3p \right)}^{2}}\left( \dfrac{1}{6} \right)+3\left( 3p \right){{\left( \dfrac{1}{6} \right)}^{2}} $

$ ={{\left( 3p-\dfrac{1}{6} \right)}^{3}} $

$  =\left( 3p-\dfrac{1}{6} \right)\left( 3p-\dfrac{1}{6} \right)\left( 3p-\dfrac{1}{6} \right) $


9. Verify:

  1. \[\mathbf{{{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left( {{x}^{2}}-xy+{{y}^{2}} \right)}\]

Ans: By using the identity, \[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right)\]

\[{{x}^{3}}+{{y}^{3}}={{\left( x+y \right)}^{3}}-3xy\left( x+y \right)\]

\[{{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left[ {{\left( x+y \right)}^{2}}-3xy \right]\]Taking \[\left( x+y \right)\] common

$ {{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left[ \left( {{x}^{2}}+{{y}^{2}}+2xy \right)-3xy \right] $

$ \Rightarrow {{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left( {{x}^{2}}+{{y}^{2}}-xy \right) $

Hence, verified.


  1. \[\mathbf{{{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)}\]

Ans: By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

\[{{x}^{3}}-{{y}^{3}}={{\left( x-y \right)}^{3}}+3xy\left( x+y \right)\]

\[{{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left[ {{\left( x-y \right)}^{2}}+3xy \right]\]

Taking \[\left( x-y \right)\] common

$ {{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left[ \left( {{x}^{2}}+{{y}^{2}}-2xy \right)+3xy \right] $

$ \Rightarrow {{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+{{y}^{2}}+xy \right) $

Hence, verified.


10. Factorise each of the following: 

  1. \[\mathbf{27{{y}^{3}}+125{{z}^{3}}}\]

Ans: Here \[27{{y}^{3}}+125{{z}^{3}}\] can be written as \[{{\left( 3y \right)}^{3}}+{{\left( 5z \right)}^{3}}\]

\[27{{y}^{3}}+125{{z}^{3}}={{\left( 3y \right)}^{3}}+{{\left( 5z \right)}^{3}}\]

As we know that, \[{{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left( {{x}^{2}}-xy+{{y}^{2}} \right)\]

\[27{{y}^{3}}+125{{z}^{3}}={{\left( 3y \right)}^{3}}+{{\left( 5z \right)}^{3}}\]

$ 27{{y}^{3}}+125{{z}^{3}}=\left( 3y+5z \right)\left[ {{\left( 3y \right)}^{2}}-\left( 3y \right)\left( 5z \right)+{{\left( 5z \right)}^{2}} \right] $

$ =\left( 3y+5z \right)\left( 9{{y}^{2}}-15yz+25{{z}^{2}} \right) $


  1. \[\mathbf{64{{m}^{3}}-343{{n}^{3}}}\]

Ans: Here \[64{{m}^{3}}-343{{n}^{3}}\] can be written as \[{{\left( 4y \right)}^{3}}-{{\left( 7z \right)}^{3}}\]

\[64{{m}^{3}}-343{{n}^{3}}={{\left( 4y \right)}^{3}}-{{\left( 7z \right)}^{3}}\]

As we know that, \[{{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)\]

\[64{{m}^{3}}-343{{n}^{3}}={{\left( 4y \right)}^{3}}-{{\left( 7z \right)}^{3}}\]

$ 64{{m}^{3}}-343{{n}^{3}}=\left( 4m-7n \right)\left[ {{\left( 4m \right)}^{2}}+\left( 4m \right)\left( 7n \right)+{{\left( 7n \right)}^{2}} \right] $ 

$ =\left( 4m-7n \right)\left( 16{{m}^{2}}+28mn+49{{n}^{2}} \right) $


11. Factorise: \[\mathbf{27{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-9xyz}\]

Ans: Here \[27{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-9xyz\] can be written as \[{{\left( 3x \right)}^{3}}+{{\left( y \right)}^{3}}+{{\left( z \right)}^{3}}-3\left( 3x \right)\left( y \right)\left( z \right)\]

\[27{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-9xyz={{\left( 3x \right)}^{3}}+{{\left( y \right)}^{3}}+{{\left( z \right)}^{3}}-3\left( 3x \right)\left( y \right)\left( z \right)\] 

We know that, \[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)\]

$ 27{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-9xyz={{\left( 3x \right)}^{3}}+{{\left( y \right)}^{3}}+{{\left( z \right)}^{3}}-3\left( 3x \right)\left( y \right)\left( z \right) $ 

$ =\left( 3x+y+z \right)\left[ {{\left( 3x \right)}^{2}}+{{y}^{2}}+{{z}^{2}}-3xy-yz-3xz \right] $

$ =\left( 3x+y+z \right)\left( 9{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-3xy-yz-3xz \right) $


12. Verify that \[\mathbf{{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\dfrac{1}{2}\left( x+y+z \right)\left[ {{\left( x-y \right)}^{2}}+{{\left( y-z \right)}^{2}}+\left( z-{{x}^{2}} \right) \right]}\]

Ans: As we know that, \[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)\], 

Dividing the equation by \[\dfrac{1}{2}\] and multiply by \[2\]

$ \Rightarrow {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\dfrac{1}{2}\left( x+y+z \right)\left[ 2\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right) \right] $ 

$  =\dfrac{1}{2}\left( x+y+z \right)\left( 2{{x}^{2}}+2{{y}^{2}}+2{{z}^{2}}-2xy-2yz-2zx \right) $

$  =\dfrac{1}{2}\left( x+y+z \right)\left[ \left( {{x}^{2}}+{{x}^{2}}+{{y}^{2}}+{{y}^{2}}+{{z}^{2}}+{{z}^{2}}-2xy-2yz-2zx \right) \right] $

$ =\dfrac{1}{2}\left( x+y+z \right)\left[ \left( {{x}^{2}}+{{y}^{2}}-2xy \right)+\left( {{y}^{2}}+{{z}^{2}}-2yz \right)+\left( {{x}^{2}}+{{z}^{2}}-2zx \right) \right] $

$ =\dfrac{1}{2}\left( x+y+z \right)\left[ {{\left( x-y \right)}^{2}}+\left( y-z \right){}^{2}+{{\left( z-x \right)}^{2}} \right] $


13. If \[\mathbf{x+y+z=0}\], show that \[\mathbf{{{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz}\]

Ans: As we know that \[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)\]

Given, \[x+y+z=0\], then

$ {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right) $

$ {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\left( 0 \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right) $ 

$  {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=0 $

$ {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz $

Hence, proved.


14. Without actually calculating the cubes, find the value of each of the following:

  1. \[\mathbf{{{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}}}\]

Ans: Let $ {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}}$

$ a=-12,~~~b=7,~~~c=5 $

We know that if, \[x+y+z=0\] then \[x{}^{3}+{{y}^{3}}+z{}^{3}=3xyz\]

Here, \[-12+7+5=0\]

$ \left( -12 \right){}^{3}+{{\left( 7 \right)}^{3}}+\left( 5 \right){}^{3}=3xyz $

$  =3\left( -12 \right)\left( 7 \right)\left( 5 \right) $

$  =-1260 $


  1. \[\mathbf{{{\left( 28 \right)}^{3}}+{{\left( -15 \right)}^{3}}+{{\left( -13 \right)}^{3}}}\]

Ans: Let $ {{\left( 28 \right)}^{3}}+{{\left( -15 \right)}^{3}}+{{\left( -13 \right)}^{3}} $

$a=28,~~~b=-15,~~~c=-13 $

We know that if, \[x+y+z=0\] then \[x{}^{3}+{{y}^{3}}+z{}^{3}=3xyz\]

Here, \[28-15-13=0\]

$ \left( 28 \right){}^{3}+{{\left( -15 \right)}^{3}}+\left( -13 \right){}^{3}=3xyz $

$ =3\left( 28 \right)\left( -15 \right)\left( -13 \right) $

$ =16380 $


15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:


Area:\[\mathbf{25{{a}^{2}}-35a+12}\]

Ans: Area: \[25{{a}^{2}}-35a+12\]

Using the splitting the middle term method,

We’ve to find a number whose sum \[=-35\]and product \[25\times 12=300\]

We’ll get \[-15\] and \[-20\] as the numbers \[\left[ -15-20=-35 \right]\] and \[\left[ -15\times \left( -20 \right)=300 \right]\]

$ 25{{a}^{2}}-35a+12 $

$ 25{{a}^{2}}-15a-20a+12 $

$ 5a\left( 5a-3 \right)-4\left( 5a-3 \right) $ 

$  \left( 5a-3 \right)\left( 5a-4 \right) $

Possible expression for length \[=\left( 5a-4 \right)\]

Possible expression for breadth \[=\left( 5a-3 \right)\]



Area:\[\mathbf{35{{y}^{2}}+13y-12}\]

Ans: Area: \[35{{y}^{2}}+13y-12\]

Using the splitting the middle term method,

We’ve to find a number whose sum \[=13\]and product \[35\times 12=420\]

We’ll get \[-15\] and \[28\] as the numbers \[\left[ -15+28=13 \right]\] and \[\left[ 15\times 28=420 \right]\]

$ 35{{y}^{2}}+13y-12 $

$ 35{{y}^{2}}-15a+28y-12 $

$ 5y\left( 7y-3 \right)+4\left( 7y-3 \right) $

$ \left( 7y-3 \right)\left( 5y+4 \right) $

Possible expression for length \[=\left( 5y+4 \right)\]

Possible expression for breadth \[=\left( 7y-3 \right)\]


16. What are the possible expressions for the dimensions of the cuboids whose volume are given below?

  1. Volume: \[\mathbf{3{{x}^{2}}-12x}\]

Ans: \[3{{x}^{2}}-12x\] can be written as \[3x\left( x-4 \right)\] by taking \[3x\] common from both the terms.

Possible expression for length \[=3\]

Possible expression for length \[=x\]

Possible expression for length \[=\left( x-4 \right)\]


  1. Volume: \[\mathbf{12k{{y}^{2}}+8ky-20k}\]

Ans: \[12k{{y}^{2}}+8ky-20k\] can be written as \[4k\left( 3{{y}^{2}}+2y-5 \right)\] by taking \[4k\] common from both the terms.

\[12k{{y}^{2}}+8ky-20k=4k\left( 3{{y}^{2}}+2y-5 \right)\]

Here, we can write \[4k\left( 3{{y}^{2}}+2y-5 \right)\] as \[4k\left( 3{{y}^{2}}+5y-3y-5 \right)\] by using the splitting the middle term method

$ 4k\left( 3{{y}^{2}}+5y-3y-5 \right) $

$  4k\left[ y\left( 3y+5 \right)-1\left( 3y+5 \right) \right] $

$  4k\left( 3y+5 \right)\left( y-1 \right) $

Possible expression for length \[=4k\]

Possible expression for length \[=\left( 3y+5 \right)\]

Possible expression for length \[=\left( y-1 \right)\]


Conclusion

Class 9 math exercise 2.4 in Chapter 2 is designed to solidify your understanding of factorizing polynomials through rigorous practice. By mastering these techniques, you build a strong foundation in algebra that will be beneficial in higher-level mathematics and various practical applications. The exercise helps to reinforce the concept that any polynomial can be expressed as a product of its factors, which is a critical skill for solving polynomial equations and simplifying complex expressions.


Class 9 Maths Chapter 2: Exercises Breakdown

Chapter 2 - Polynomials All Exercises in PDF Format

Exercise 2.1

5 Question & Solutions

Exercise 2.2

4 Questions & Solutions

Exercise 2.3

5 Questions & Solutions



Other Study Materials for CBSE Class 9 Maths Chapter 2



Chapter-Specific NCERT Solutions for Class 9 Maths

Given below are the chapter-wise NCERT Solutions for Class 9 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Study Materials for CBSE Class 9 Maths

WhatsApp Banner

FAQs on NCERT Solutions For Class 9 Maths Chapter 2 Polynomials Exercise 2.4 (2025-26)

1. What is included in NCERT Solutions for Class 9 Maths Chapter 2 Exercise 2.4?

NCERT Solutions for Class 9 Maths Chapter 2 Exercise 2.4 include complete, step-by-step answers for all questions given in Polynomials, strictly following the NCERT textbook format.

2. Where can students find Exercise 2.4 Class 9 solutions?

Students can find Exercise 2.4 Class 9 solutions on Vedantu, where NCERT Solutions for Polynomials are organised clearly and presented in an exam-ready format.

3. Are Class 9 Maths Chapter 2 Exercise 2.4 solutions aligned with CBSE standards?

Yes, Class 9 Maths Chapter 2 Exercise 2.4 solutions are aligned with CBSE answer-writing standards and show all required steps as expected in school exams.

4. What type of questions are covered in Class 9 Maths Chapter 2 Exercise 2.4?

Class 9 Maths Chapter 2 Exercise 2.4 covers only the questions prescribed by NCERT under the chapter Polynomials, and all of them are solved in the same order as the textbook.

5. Who should use Class 9th Maths Polynomials Chapter 2 Exercise 2.4 solutions?

Class 9th Maths Polynomials Chapter 2 Exercise 2.4 solutions are suitable for students who want accurate, NCERT-aligned answers for homework, practice work, and school assessments.

6. How are answers presented in Exercise 2.4 Class 9 NCERT Solutions?

In Exercise 2.4 Class 9 NCERT Solutions, answers are presented in a clean, stepwise format to help students understand how marks are awarded in exams.

7. Do NCERT Solutions for Polynomials Exercise 2.4 follow the NCERT question sequence?

Yes, NCERT Solutions for Polynomials Exercise 2.4 strictly follow the same question numbering and sequence as given in the NCERT textbook.

8. Can Class 9 Maths Chapter 2 Exercise 2.4 solutions be used for school exams?

Yes, Class 9 Maths Chapter 2 Exercise 2.4 solutions can be confidently used for school exams as they are fully aligned with NCERT and CBSE guidelines.

9. How is Exercise 2.4 positioned within the chapter Polynomials?

Exercise 2.4 is an important exercise within Class 9 Maths Chapter 2 Polynomials, and its question formats are commonly included in school-level tests.

10. Why do students prefer NCERT Solutions for Class 9 Maths Exercise 2.4 on Vedantu?

Students prefer NCERT Solutions for Class 9 Maths Exercise 2.4 on Vedantu because they provide accurate answers, clear step-by-step working, and strict alignment with the NCERT textbook.