
If \[A = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\] , then find \[{\left( {{B^{ - 1}}{A^{ - 1}}} \right)^{ - 1}}\].
A. \[\left[ {\begin{array}{*{20}{c}}2&{ - 2}\\2&3\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}3&{ - 2}\\2&2\end{array}} \right]\]
C. \[\dfrac{1}{{10}}\left[ {\begin{array}{*{20}{c}}2&2\\{ - 2}&3\end{array}} \right]\]
D. \[\dfrac{1}{{10}}\left[ {\begin{array}{*{20}{c}}3&2\\{ - 2}&2\end{array}} \right]\]
Answer
228.3k+ views
Hint: First we will check whether the given matrices are invertible or not. To solve the question, we will apply the formula of the inverse of the matrix product. Again, apply the formula inverse of the inverse matrix. Then substitute the matrix A and B and solve it.
Formula Used:
A matrix A is invertible, if \[\left| A \right| \ne 0\].
Inverse of matrix product formula: \[{\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}\], where A and B invertible matrix.
Inverse of inverse matrix formula is \[{\left( {{A^{ - 1}}} \right)^{ - 1}} = A\]
Complete step by step solution:
Given matrices are \[A = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\].
Now calculating the determinate of both matrix
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right|\]
\[ = 2 \cdot 2 - 2 \cdot \left( { - 3} \right)\]
\[ = 10 \ne 0\]
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right|\]
\[ = 0 \cdot 0 - 1 \cdot \left( { - 1} \right)\]
\[ = 1 \ne 0\]
Sine, determinant of both the matrices \[ne 0\]
Thus both matrices are invertible.
Apply the formula of the inverse of matrix product on \[{\left( {{B^{ - 1}}{A^{ - 1}}} \right)^{ - 1}}\]
\[{\left( {{B^{ - 1}}{A^{ - 1}}} \right)^{ - 1}}\]
\[ = {\left( {{A^{ - 1}}} \right)^{ - 1}}{\left( {{B^{ - 1}}} \right)^{ - 1}}\]
Now applying the inverse of the inverse matrix
\[ = AB\]
Substitute \[A = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\]
By matrix multiplication,
\[ = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{2 \cdot 0 + 2 \cdot 1}&{2 \cdot \left( { - 1} \right) + 2 \cdot 0}\\{ - 3 \cdot 0 + 2 \cdot 1}&{ - 3 \cdot \left( { - 1} \right) + 2 \cdot 0}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}2&{ - 2}\\2&3\end{array}} \right]\]
Hence option A is the correct option.
Note: Students often do a common mistake to solve the question. They do not apply the inverse of matrix multiplication. The correct way is: we apply the inverse of matrix multiplication, then the formula inverse of the inverse matrix. Remember the matrix must be invertible.
Formula Used:
A matrix A is invertible, if \[\left| A \right| \ne 0\].
Inverse of matrix product formula: \[{\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}\], where A and B invertible matrix.
Inverse of inverse matrix formula is \[{\left( {{A^{ - 1}}} \right)^{ - 1}} = A\]
Complete step by step solution:
Given matrices are \[A = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\].
Now calculating the determinate of both matrix
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right|\]
\[ = 2 \cdot 2 - 2 \cdot \left( { - 3} \right)\]
\[ = 10 \ne 0\]
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right|\]
\[ = 0 \cdot 0 - 1 \cdot \left( { - 1} \right)\]
\[ = 1 \ne 0\]
Sine, determinant of both the matrices \[ne 0\]
Thus both matrices are invertible.
Apply the formula of the inverse of matrix product on \[{\left( {{B^{ - 1}}{A^{ - 1}}} \right)^{ - 1}}\]
\[{\left( {{B^{ - 1}}{A^{ - 1}}} \right)^{ - 1}}\]
\[ = {\left( {{A^{ - 1}}} \right)^{ - 1}}{\left( {{B^{ - 1}}} \right)^{ - 1}}\]
Now applying the inverse of the inverse matrix
\[ = AB\]
Substitute \[A = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\]
By matrix multiplication,
\[ = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{2 \cdot 0 + 2 \cdot 1}&{2 \cdot \left( { - 1} \right) + 2 \cdot 0}\\{ - 3 \cdot 0 + 2 \cdot 1}&{ - 3 \cdot \left( { - 1} \right) + 2 \cdot 0}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}2&{ - 2}\\2&3\end{array}} \right]\]
Hence option A is the correct option.
Note: Students often do a common mistake to solve the question. They do not apply the inverse of matrix multiplication. The correct way is: we apply the inverse of matrix multiplication, then the formula inverse of the inverse matrix. Remember the matrix must be invertible.
Recently Updated Pages
If A left beginarray20c3457endarray right then find class 12 maths JEE_Advanced

If u left x2 + y2 + z2 rightdfrac12 then prove that class 12 maths JEE_Advanced

If for the matrix A A3 I then find A 1 A A2 B A3 C class 12 maths JEE_Advanced

If A left beginarray20c22 32endarray right and B left class 12 maths JEE_Advanced

Find the inverse matrix of the matrix left beginarray20c012123311endarray class 12 maths JEE_Advanced

Let C1 and C2 be two biased coins such that the probabilities class 12 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Other Pages
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

