
If \[z = {\sin ^{ - 1}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\] then find \[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}}\].
A. \[\cot z\]
B. \[\dfrac{1}{2}\tan z\]
C. \[\dfrac{1}{2}\cot z\]
D. \[\tan z\]
Answer
232.8k+ views
Hint: First we will find reverse of inverse trigonometry. Then find the partial derivative of the equation with respect to \[x\] and \[y\]. Then calculate the value of \[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}}\].
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\sin x} \right) = \cos x\]
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{\partial u}}{{\partial x}} - u\dfrac{{\partial v}}{{\partial x}}}}{{{v^2}}}\]
Complete step by step solution:
Given equation is \[z = {\sin ^{ - 1}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\].
Apply the reverse formula of trigonometry inverse
\[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] …….(i)
Calculate the partial derivative of equation (i) with respect to \[x\]
\[\cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial x}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial x}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2x + 2\sqrt {xy} - x - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x + 2\sqrt {xy} - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] ……..(ii)
Calculate the partial derivative of equation (i) with respect to \[y\]
\[\cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{\partial }{{\partial y}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial y}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial y}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt {xy} + 2y - x - y}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{y + 2\sqrt {xy} - x}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]…..(iii)
Multiply \[x\] with equation (ii) and multiply \[y\] with equation (iii) and add them
\[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x\left( {x + 2\sqrt {xy} - y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}} + \dfrac{1}{{\cos z}} \cdot \dfrac{{y\left( {y + 2\sqrt {xy} - x} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Take common \[\dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] from the right side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\dfrac{{\sqrt x \cdot \sqrt x \left( {x + 2\sqrt {xy} - y} \right)}}{{\sqrt x }} + \dfrac{{\sqrt y \cdot \sqrt y \left( {y + 2\sqrt {xy} - x} \right)}}{{\sqrt y }}} \right]\]
Cancel out same terms from the numerator and denominator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\sqrt x \left( {x + 2\sqrt {xy} - y} \right) + \sqrt y \left( {y + 2\sqrt {xy} - x} \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + 2x\sqrt y - y\sqrt x + y\sqrt y + 2y\sqrt x - x\sqrt y } \right]\]
Subtract like on the numerator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + x\sqrt y + y\sqrt y + y\sqrt x } \right]\]
Apply factor method
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\left( {\sqrt x + \sqrt y } \right) + y\left( {\sqrt y + \sqrt x } \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right)\]
Cancel out \[\left( {\sqrt x + \sqrt y } \right)\] from the denominator and numerator from the right-side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \dfrac{{\left( {x + y} \right)}}{{\left( {\sqrt x + \sqrt y } \right)}}\]
From equation (i) we get \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\]
Substitute \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] in the above equation
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \sin z\]
We know that \[\dfrac{{\sin x}}{{\cos x}} = \tan x\].
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{2}\tan z\]
Hence option B is the correct option.
Note: Partial derivative is all most same as normal derivate. But in the partial derivative we consider only one variable and other variables are treated as constant. When we find the partial derivative \[\dfrac{\partial }{{\partial x}}\], then we consider \[x\] as variable and \[y\] as a constant.
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\sin x} \right) = \cos x\]
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{\partial u}}{{\partial x}} - u\dfrac{{\partial v}}{{\partial x}}}}{{{v^2}}}\]
Complete step by step solution:
Given equation is \[z = {\sin ^{ - 1}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\].
Apply the reverse formula of trigonometry inverse
\[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] …….(i)
Calculate the partial derivative of equation (i) with respect to \[x\]
\[\cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial x}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial x}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2x + 2\sqrt {xy} - x - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x + 2\sqrt {xy} - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] ……..(ii)
Calculate the partial derivative of equation (i) with respect to \[y\]
\[\cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{\partial }{{\partial y}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial y}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial y}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt {xy} + 2y - x - y}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{y + 2\sqrt {xy} - x}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]…..(iii)
Multiply \[x\] with equation (ii) and multiply \[y\] with equation (iii) and add them
\[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x\left( {x + 2\sqrt {xy} - y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}} + \dfrac{1}{{\cos z}} \cdot \dfrac{{y\left( {y + 2\sqrt {xy} - x} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Take common \[\dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] from the right side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\dfrac{{\sqrt x \cdot \sqrt x \left( {x + 2\sqrt {xy} - y} \right)}}{{\sqrt x }} + \dfrac{{\sqrt y \cdot \sqrt y \left( {y + 2\sqrt {xy} - x} \right)}}{{\sqrt y }}} \right]\]
Cancel out same terms from the numerator and denominator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\sqrt x \left( {x + 2\sqrt {xy} - y} \right) + \sqrt y \left( {y + 2\sqrt {xy} - x} \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + 2x\sqrt y - y\sqrt x + y\sqrt y + 2y\sqrt x - x\sqrt y } \right]\]
Subtract like on the numerator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + x\sqrt y + y\sqrt y + y\sqrt x } \right]\]
Apply factor method
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\left( {\sqrt x + \sqrt y } \right) + y\left( {\sqrt y + \sqrt x } \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right)\]
Cancel out \[\left( {\sqrt x + \sqrt y } \right)\] from the denominator and numerator from the right-side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \dfrac{{\left( {x + y} \right)}}{{\left( {\sqrt x + \sqrt y } \right)}}\]
From equation (i) we get \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\]
Substitute \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] in the above equation
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \sin z\]
We know that \[\dfrac{{\sin x}}{{\cos x}} = \tan x\].
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{2}\tan z\]
Hence option B is the correct option.
Note: Partial derivative is all most same as normal derivate. But in the partial derivative we consider only one variable and other variables are treated as constant. When we find the partial derivative \[\dfrac{\partial }{{\partial x}}\], then we consider \[x\] as variable and \[y\] as a constant.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2026 Surface Chemistry Revision Notes - Free PDF Download

JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Chemistry Solutions - Free PDF Download

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

