
\[\int_0^\pi {xf(\sin x)} dx = \] [IIT\[1982\]; Kurukshetra CEE\[1993\]]
E) \[\pi \int_0^\pi {f(\sin x)} dx\]
F) \[\dfrac{\pi }{2}\int_0^\pi {f(\sin x)} dx\]
G) \[\dfrac{\pi }{2}\int_0^{\dfrac{\pi }{2}} {f(\sin x)} dx\]
H) None of these
Answer
232.8k+ views
Hint: in this question, we have to find the given integral. In order to find this, the properties of the definite integral are used. From appropriate property of definite integral given integration is evaluated.
Formula Used: The definite integral is the area under the curve between two fixed limits in which one limit is upper limit and other limit is lower limit.
Property of definite integral used is given as
\[\int_0^a {xf(x)} dx = \dfrac{1}{2}a\int_0^a {f(x)} dx\]
If given function satisfy the condition\[f(a - x) = f(x)\]then we will use the above property of definite integral
Where
a is upper limit of integral and 0is a lower limit of integral.
Complete step by step solution: Given: Definite integral \[\int_0^\pi {xf(\sin x)} dx\]
Here in this integral upper limit is \[\pi \] and lower limit of integral is zero
Now check the condition \[f(a - x) = f(x)\]
\[\sin (\pi - x) = \sin (x)\]
Condition is satisfied
We know that
\[\int_0^a {xf(x)} dx = \dfrac{1}{2}a\int_0^a {f(x)} dx\] If \[f(a - x) = f(x)\]
\[\int_0^\pi {xf(\sin x)} dx = \dfrac{\pi }{2}\int_0^\pi {f(\sin x)} dx\]
So required integral is
\[\dfrac{\pi }{2}\int_0^\pi {f(\sin x)} dx\]
Option ‘B’ is correct
Note: Here we must check that the given functions satisfy the condition \[f(a - x) = f(x)\]or not if functions satisfy the condition then only we apply the property.
The definite integral is the area under the curve between two fixed limits.
Let f(x) is a function and suppose integration of function f(x) is F(x) then definite integral of f(x) having upper limit b and lower limit a can be written in mathematical expression as
\[\int_a^b {f(x)} dx = F(b) - F(a)\]
Properties of the definite integrals are:
1) Interchanging the upper and lower limit: \[\int_b^a {f(x)} dx = - \int_a^b {f(x)} dx\]
2) \[\int_b^a {f(x)} dx = \int_b^a {f(t)} dt\]
3) \[\int_0^a {f(x)} dx = \int_0^a {f(a - x)} dx\]
4) \[\int_a^b {f(x)} dx = \int_a^c {f(x)} dx + \int_c^b {f(x)} dx\]
Formula Used: The definite integral is the area under the curve between two fixed limits in which one limit is upper limit and other limit is lower limit.
Property of definite integral used is given as
\[\int_0^a {xf(x)} dx = \dfrac{1}{2}a\int_0^a {f(x)} dx\]
If given function satisfy the condition\[f(a - x) = f(x)\]then we will use the above property of definite integral
Where
a is upper limit of integral and 0is a lower limit of integral.
Complete step by step solution: Given: Definite integral \[\int_0^\pi {xf(\sin x)} dx\]
Here in this integral upper limit is \[\pi \] and lower limit of integral is zero
Now check the condition \[f(a - x) = f(x)\]
\[\sin (\pi - x) = \sin (x)\]
Condition is satisfied
We know that
\[\int_0^a {xf(x)} dx = \dfrac{1}{2}a\int_0^a {f(x)} dx\] If \[f(a - x) = f(x)\]
\[\int_0^\pi {xf(\sin x)} dx = \dfrac{\pi }{2}\int_0^\pi {f(\sin x)} dx\]
So required integral is
\[\dfrac{\pi }{2}\int_0^\pi {f(\sin x)} dx\]
Option ‘B’ is correct
Note: Here we must check that the given functions satisfy the condition \[f(a - x) = f(x)\]or not if functions satisfy the condition then only we apply the property.
The definite integral is the area under the curve between two fixed limits.
Let f(x) is a function and suppose integration of function f(x) is F(x) then definite integral of f(x) having upper limit b and lower limit a can be written in mathematical expression as
\[\int_a^b {f(x)} dx = F(b) - F(a)\]
Properties of the definite integrals are:
1) Interchanging the upper and lower limit: \[\int_b^a {f(x)} dx = - \int_a^b {f(x)} dx\]
2) \[\int_b^a {f(x)} dx = \int_b^a {f(t)} dt\]
3) \[\int_0^a {f(x)} dx = \int_0^a {f(a - x)} dx\]
4) \[\int_a^b {f(x)} dx = \int_a^c {f(x)} dx + \int_c^b {f(x)} dx\]
Recently Updated Pages
JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2021 Chemistry Question Paper 1 with Solutions

JEE Advanced 2022 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

JEE Advanced 2021 Chemistry Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

If 16 identical pencils are distributed among 4 children class 11 maths JEE_Advanced

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

JEE Advanced 2026 Notes

Difference Between Exothermic and Endothermic Reactions Explained

Other Pages
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

