
What is the inverse of \[A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\]?
A. \[\left( {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right)\]
B. \[\dfrac{1}{{\left( {ad - bc} \right)}}\left( {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right)\]
C. \[\dfrac{1}{{\left| A \right|}}\left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)\]
D. \[\left( {\begin{array}{*{20}{c}}b&{ - a}\\d&{ - c}\end{array}} \right)\]
Answer
233.1k+ views
Hint: We will find the cofactors of the given matrix. Using the cofactors, we will find the adjoint of the given matrix. Then we will calculate the determinate of the given matrix. Then put the adjoint matrix and determinant in the formula of the inverse matrix.
Formula used:
The adjoint of the matrix \[\left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}\\{{a_{21}}}&{{a_{22}}}\end{array}} \right]\] is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\]where \[{A_{ij}}\] are the cofactors.
The inverse formula of matrix A is \[A = \dfrac{1}{{\left| A \right|}}Adj\,A\].
Complete Step by step solution:
Given matrix is \[A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\]
The cofactors of the matrix are
\[{A_{11}} =(-1)^{1+1} d = d\]
\[{A_{12}} = (-1)^{1+2}c = -c\]
\[{A_{21}} = (-1)^{2+1} b = -b\]
\[{A_{22}} = (-1)^{2+2}a = a\]
The adjoint of the given matrix is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Now we will calculate the determinate of the given matrix
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right|\]
\[ \Rightarrow \left| A \right| = ad - bc\]
Now we will substitute the adjoint matrix and determinate of A in the formula \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}Adj\,A\].
\[{A^{ - 1}} = \dfrac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Hence option B is the correct option.
Additional information:
The inverse of a matrix exists if and only if the matrix is a non-singular matrix. In other words, if the determinate of a matrix is not equal to zero, then the inverse of the matrix exists.
Note: Students do a mistake to calculate the adjoint matrix. We have to transpose the row and column of the cofactor to find the adjoint of the matrix. But students forgot to transpose the rows and columns that is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{12}}}\\{{A_{21}}}&{{A_{22}}}\end{array}} \right]\]. The correct formula is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\].
Formula used:
The adjoint of the matrix \[\left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}\\{{a_{21}}}&{{a_{22}}}\end{array}} \right]\] is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\]where \[{A_{ij}}\] are the cofactors.
The inverse formula of matrix A is \[A = \dfrac{1}{{\left| A \right|}}Adj\,A\].
Complete Step by step solution:
Given matrix is \[A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\]
The cofactors of the matrix are
\[{A_{11}} =(-1)^{1+1} d = d\]
\[{A_{12}} = (-1)^{1+2}c = -c\]
\[{A_{21}} = (-1)^{2+1} b = -b\]
\[{A_{22}} = (-1)^{2+2}a = a\]
The adjoint of the given matrix is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Now we will calculate the determinate of the given matrix
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right|\]
\[ \Rightarrow \left| A \right| = ad - bc\]
Now we will substitute the adjoint matrix and determinate of A in the formula \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}Adj\,A\].
\[{A^{ - 1}} = \dfrac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Hence option B is the correct option.
Additional information:
The inverse of a matrix exists if and only if the matrix is a non-singular matrix. In other words, if the determinate of a matrix is not equal to zero, then the inverse of the matrix exists.
Note: Students do a mistake to calculate the adjoint matrix. We have to transpose the row and column of the cofactor to find the adjoint of the matrix. But students forgot to transpose the rows and columns that is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{12}}}\\{{A_{21}}}&{{A_{22}}}\end{array}} \right]\]. The correct formula is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\].
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2026 Surface Chemistry Revision Notes - Free PDF Download

JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Chemistry Solutions - Free PDF Download

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

