
Let ${C_1}$ and ${C_2}$ be two biased coins such that the probabilities of getting head in a single toss are $\dfrac{2}{3}$and $\dfrac{1}{3}$, respectively. Suppose $\alpha $ is the number of heads that appear when ${C_1}$ is tossed twice, independently, and suppose $\beta $ is the number of heads that appear when ${C_2}$ is tossed twice, independently. Then the probability that the roots of the quadratic polynomial ${x^2} + \alpha x + \beta $ are real and equal, is
A. $\dfrac{{40}}{{81}}$
B. $\dfrac{{20}}{{81}}$
C. $\dfrac{1}{2}$
D. $\dfrac{1}{4}$
Answer
228.3k+ views
Hint: In this question, we need to find the probability of the roots of quadratic equation ${x^2} + \alpha x + \beta $such that the roots are real and equal. First, we will find the probabilities of occurrence of tails in each biased coin. We know that, in a quadratic equation, the roots are real and equal when the determinant is zero. Now, in order to find the required probability, we will use permutation and combination concepts.
Formula Used:
The following formula will be useful for solving this question
$P(T) = 1 - P(H)$
$P(E) = {}^n{C_r}{P_r}$
where $RE,KE$are required event and known event respectively and ${}^n{C_r},P$ are combination and probability respectively.
Complete step by step solution:
We know that for biased coin ${C_1}$,
$P{(H)_{{C_1}}} = \dfrac{2}{3}$
Therefore, by using formula $P(T) = 1 - P(H)$,we get
$ P{(T)_{{C_1}}} = 1 - \dfrac{2}{3} \\ \Rightarrow \dfrac{1}{3} $
Similarly, for biased coin ${C_2}$,$P{(H)_{{C_2}}} = \dfrac{1}{3}$,
Therefore, by using formula $P(T) = 1 - P(H)$,we get
$ P{(T)_{{C_2}}} = 1 - \dfrac{1}{3} \\ \Rightarrow \dfrac{2}{3} $
Now, we know that, in quadratic equations, the roots are real and equal only when the determinant of the equation is zero.
Therefore, for equation${x^2} + \alpha x + \beta $
$ D = 0 \\ {b^2} - 4ac = 0 \\ {\alpha ^2} - 4\beta = 0 \\ {\alpha ^2} = 4\beta $
which means that for $\alpha = 0$,$\beta $will be $0$and for $\alpha = 2$, $\beta $will be $1$
Therefore, by using formula $P(E) = {}^n{C_0} \times P_1^2 \times {}^n{C_0} \times P_2^2 + {}^n{C_n} \times P_1^2 \times {}^n{C_{n - 1}} \times {P_1} \times {P_2} + ...$, we get
$ P(E) = {}^n{C_0} \times P(T)_{{C_1}}^2 \times {}^n{C_0} \times P(T)_{{C_2}}^2 + {}^n{C_n} \times P(H)_{{C_1}}^2 \times {}^n{C_{n - 1}} \times P{(H)_{{C_1}}} \times P{(H)_{{C_2}}} \\ \Rightarrow {}^2{C_0} \times {\left( {\dfrac{1}{3}} \right)^2} \times {}^2{C_0} \times {\left( {\dfrac{2}{3}} \right)^2} + {}^2{C_2} \times {\left( {\dfrac{2}{3}} \right)^2} \times {}^2{C_1} \times \left( {\dfrac{1}{3}} \right) \times \left( {\dfrac{2}{3}} \right) \\ \Rightarrow \left( {\dfrac{1}{9}} \right) \times \left( {\dfrac{4}{9}} \right) + \left( {\dfrac{4}{9}} \right) \times \left( {\dfrac{4}{9}} \right) \\ \Rightarrow \dfrac{{20}}{{81}} $
Option ‘B’ is correct
Note: Students may make mistakes in selecting the values of events that occurred. Students should use a proper formula for probability which would be in terms of combination. This formula would be given in their textbooks or they can refer to the internet as well for the same.
Formula Used:
The following formula will be useful for solving this question
$P(T) = 1 - P(H)$
$P(E) = {}^n{C_r}{P_r}$
where $RE,KE$are required event and known event respectively and ${}^n{C_r},P$ are combination and probability respectively.
Complete step by step solution:
We know that for biased coin ${C_1}$,
$P{(H)_{{C_1}}} = \dfrac{2}{3}$
Therefore, by using formula $P(T) = 1 - P(H)$,we get
$ P{(T)_{{C_1}}} = 1 - \dfrac{2}{3} \\ \Rightarrow \dfrac{1}{3} $
Similarly, for biased coin ${C_2}$,$P{(H)_{{C_2}}} = \dfrac{1}{3}$,
Therefore, by using formula $P(T) = 1 - P(H)$,we get
$ P{(T)_{{C_2}}} = 1 - \dfrac{1}{3} \\ \Rightarrow \dfrac{2}{3} $
Now, we know that, in quadratic equations, the roots are real and equal only when the determinant of the equation is zero.
Therefore, for equation${x^2} + \alpha x + \beta $
$ D = 0 \\ {b^2} - 4ac = 0 \\ {\alpha ^2} - 4\beta = 0 \\ {\alpha ^2} = 4\beta $
which means that for $\alpha = 0$,$\beta $will be $0$and for $\alpha = 2$, $\beta $will be $1$
Therefore, by using formula $P(E) = {}^n{C_0} \times P_1^2 \times {}^n{C_0} \times P_2^2 + {}^n{C_n} \times P_1^2 \times {}^n{C_{n - 1}} \times {P_1} \times {P_2} + ...$, we get
$ P(E) = {}^n{C_0} \times P(T)_{{C_1}}^2 \times {}^n{C_0} \times P(T)_{{C_2}}^2 + {}^n{C_n} \times P(H)_{{C_1}}^2 \times {}^n{C_{n - 1}} \times P{(H)_{{C_1}}} \times P{(H)_{{C_2}}} \\ \Rightarrow {}^2{C_0} \times {\left( {\dfrac{1}{3}} \right)^2} \times {}^2{C_0} \times {\left( {\dfrac{2}{3}} \right)^2} + {}^2{C_2} \times {\left( {\dfrac{2}{3}} \right)^2} \times {}^2{C_1} \times \left( {\dfrac{1}{3}} \right) \times \left( {\dfrac{2}{3}} \right) \\ \Rightarrow \left( {\dfrac{1}{9}} \right) \times \left( {\dfrac{4}{9}} \right) + \left( {\dfrac{4}{9}} \right) \times \left( {\dfrac{4}{9}} \right) \\ \Rightarrow \dfrac{{20}}{{81}} $
Option ‘B’ is correct
Note: Students may make mistakes in selecting the values of events that occurred. Students should use a proper formula for probability which would be in terms of combination. This formula would be given in their textbooks or they can refer to the internet as well for the same.
Recently Updated Pages
If A left beginarray20c3457endarray right then find class 12 maths JEE_Advanced

If u left x2 + y2 + z2 rightdfrac12 then prove that class 12 maths JEE_Advanced

If for the matrix A A3 I then find A 1 A A2 B A3 C class 12 maths JEE_Advanced

If A left beginarray20c22 32endarray right and B left class 12 maths JEE_Advanced

Find the inverse matrix of the matrix left beginarray20c012123311endarray class 12 maths JEE_Advanced

Let C1 and C2 be two biased coins such that the probabilities class 12 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Other Pages
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

