
What is the solution of the differential equation \[{e^{\dfrac{{dy}}{{dx}}}} = \left( {x + 1} \right)\], \[y\left( 0 \right) = 3\]?
A. \[y = x\log x - x + 2\]
B. \[y = \left( {x + 1} \right)\log \left| {x + 1} \right| - x + 3\]
C. \[y = \left( {x + 1} \right)\log \left| {x + 1} \right| + x + 3\]
D. \[y = x\log x + x + 3\]
E. \[y = - \left( {x + 1} \right)\log \left| {x + 1} \right| + x + 3\]
Answer
228k+ views
Hint: We will take the logarithm of both sides of the differential equation. Then we separate the variables of the differential equation and integrate both sides of the equation and solve the integration by using by parts formula. To calculate the integrating constant, we will put the initial condition.
Formula Used: Part parts formula:
\[\int {uvdx = u\int {vdx} - \int {\left[ {\dfrac{d}{{dx}}u\int {vdx} } \right]dx} } \]
u is the first function and v is the second function.
Complete step by step solution: Given differential equation is:
\[{e^{\dfrac{{dy}}{{dx}}}} = \left( {x + 1} \right)\]
Taking logarithms on both sides:
\[ \Rightarrow \log \left( {{e^{\dfrac{{dy}}{{dx}}}}} \right) = \log \left( {x + 1} \right)\]
Applying the formula \[\log {e^a} = a\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \log \left( {x + 1} \right)\]
Separate the variables of the above equation:
\[ \Rightarrow dy = \log \left( {x + 1} \right)dx\]
Taking integrating both sides:
\[ \Rightarrow \int {dy} = \int {\log \left( {x + 1} \right)dx} \]
Applying by parts formula on the right side:
\[ \Rightarrow y = \log \left( {x + 1} \right)\int {dx} - \int {\left[ {\dfrac{d}{{dx}}\left( {\log \left( {x + 1} \right)} \right)\int {dx} } \right]dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\left[ {\dfrac{1}{{x + 1}} \cdot x} \right]dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\dfrac{x}{{x + 1}}dx} \]
Add and subtract 1 with numerator of \[\int {\dfrac{x}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\dfrac{{x + 1 - 1}}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {dx} + \int {\dfrac{1}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - x + \log \left| {x + 1} \right| + c\]
\[ \Rightarrow y = \left( {x + 1} \right)\log \left( {x + 1} \right) - x + c\] ….(i)
Now putting x = 0 and y = 3:
\[ \Rightarrow 3 = \left( {0 + 1} \right)\log \left( {0 + 1} \right) - 0 + c\]
\[ \Rightarrow 3 = c\]
Putting c = 3 in equation (i)
\[ \Rightarrow y = \left( {x + 1} \right)\log \left( {x + 1} \right) - x + 3\]
Option ‘B’ is correct
Note: Students often do mistake when they put initial condition. They put x =3 and y=0 which is incorrect. We have to put x = 0 and y = 3 in the solution of the differential equation to find the value of the integrating constant.
Formula Used: Part parts formula:
\[\int {uvdx = u\int {vdx} - \int {\left[ {\dfrac{d}{{dx}}u\int {vdx} } \right]dx} } \]
u is the first function and v is the second function.
Complete step by step solution: Given differential equation is:
\[{e^{\dfrac{{dy}}{{dx}}}} = \left( {x + 1} \right)\]
Taking logarithms on both sides:
\[ \Rightarrow \log \left( {{e^{\dfrac{{dy}}{{dx}}}}} \right) = \log \left( {x + 1} \right)\]
Applying the formula \[\log {e^a} = a\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \log \left( {x + 1} \right)\]
Separate the variables of the above equation:
\[ \Rightarrow dy = \log \left( {x + 1} \right)dx\]
Taking integrating both sides:
\[ \Rightarrow \int {dy} = \int {\log \left( {x + 1} \right)dx} \]
Applying by parts formula on the right side:
\[ \Rightarrow y = \log \left( {x + 1} \right)\int {dx} - \int {\left[ {\dfrac{d}{{dx}}\left( {\log \left( {x + 1} \right)} \right)\int {dx} } \right]dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\left[ {\dfrac{1}{{x + 1}} \cdot x} \right]dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\dfrac{x}{{x + 1}}dx} \]
Add and subtract 1 with numerator of \[\int {\dfrac{x}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\dfrac{{x + 1 - 1}}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {dx} + \int {\dfrac{1}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - x + \log \left| {x + 1} \right| + c\]
\[ \Rightarrow y = \left( {x + 1} \right)\log \left( {x + 1} \right) - x + c\] ….(i)
Now putting x = 0 and y = 3:
\[ \Rightarrow 3 = \left( {0 + 1} \right)\log \left( {0 + 1} \right) - 0 + c\]
\[ \Rightarrow 3 = c\]
Putting c = 3 in equation (i)
\[ \Rightarrow y = \left( {x + 1} \right)\log \left( {x + 1} \right) - x + 3\]
Option ‘B’ is correct
Note: Students often do mistake when they put initial condition. They put x =3 and y=0 which is incorrect. We have to put x = 0 and y = 3 in the solution of the differential equation to find the value of the integrating constant.
Recently Updated Pages
What is the solution of the differential equation edfracdydx class 11 maths JEE_Advanced

In a GP of 3rmn terms S1 denotes the sum of first rmn class 11 maths JEE_Advanced

In an isosceles triangle ABC the coordinates of the class 11 maths JEE_Advanced

If a1+left sqrt31 right+left sqrt31 right2+left sqrt31 class 11 maths JEE_Advanced

What is the value of the integral intlimits 11 sin class 11 maths JEE_Advanced

int 44 left x + 2 right dx A 50 B 24 C 20 D None of class 11 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Other Pages
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

