
What is the solution of the differential equation \[{\left( {x + y} \right)^2}\dfrac{{dy}}{{dx}} = {a^2}\]?
A. \[{\left( {x + y} \right)^2} = \dfrac{{{a^2}}}{2}x + c\]
B. \[{\left( {x + y} \right)^2} = {a^2}x + c\]
C. \[{\left( {x + y} \right)^2} = 2{a^2}x + c\]
D. None of these
Answer
221.7k+ views
Hint: The given differential equation is a homogeneous equation. Thus, to solve the given differential equation, we will use the substitution method.
Formula Used: Integration formula:
\[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + c\]
Homogeneous equation: The function \[f\left( {x,y} \right)\] is homogeneous with degree n if \[f\left( {\lambda x,\lambda y} \right) = {\lambda ^n}f\left( {x,y} \right)\] where \[\lambda \] is nonzero constant.
Complete step by step solution: Given differential equation is
\[{\left( {x + y} \right)^2}\dfrac{{dy}}{{dx}} = {a^2}\]
Rewrite the above equation:
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{a^2}}}{{{{\left( {x + y} \right)}^2}}}\]
Compare equation (i) with \[\dfrac{{dy}}{{dx}} = f\left( {x,y} \right)\]
\[f\left( {x,y} \right) = \dfrac{{{a^2}}}{{{{\left( {x + y} \right)}^2}}}\]
Putting \[x = \lambda x\] and \[y = \lambda y\]
\[f\left( {\lambda x,\lambda y} \right) = \dfrac{{{a^2}}}{{{{\left( {\lambda x + \lambda y} \right)}^2}}}\]
\[ \Rightarrow f\left( {\lambda x,\lambda y} \right) = \dfrac{{{a^2}}}{{{\lambda ^2}{{\left( {x + y} \right)}^2}}}\]
\[ \Rightarrow f\left( {\lambda x,\lambda y} \right) = {\lambda ^{ - 2}}f\left( {x,y} \right)\]
The given differential equation is a homogenous with degree 2.
Since given differential equation is a homogenous equation, we will apply substitution method.
Assume that,
\[x + y = z\]
Differentiate both sides with respect to x:
\[ \Rightarrow 1 + \dfrac{{dy}}{{dx}} = \dfrac{{dz}}{{dx}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dz}}{{dx}} - 1\]
Substitute \[x + y = z\] and \[\dfrac{{dy}}{{dx}} = \dfrac{{dz}}{{dx}} - 1\] in the given differential equation:
\[{z^2}\left( {\dfrac{{dz}}{{dx}} - 1} \right) = {a^2}\]
\[ \Rightarrow \left( {\dfrac{{dz}}{{dx}} - 1} \right) = \dfrac{{{a^2}}}{{{z^2}}}\]
\[ \Rightarrow \dfrac{{dz}}{{dx}} - 1 + 1 = \dfrac{{{a^2}}}{{{z^2}}} + 1\]
Add 1 on both sides
\[ \Rightarrow \dfrac{{dz}}{{dx}} = \dfrac{{{a^2} + {z^2}}}{{{z^2}}}\]
\[ \Rightarrow \dfrac{{{z^2}dz}}{{{a^2} + {z^2}}} = dx\]
Add and subtract \[{a^2}\] with numerator:
\[ \Rightarrow \dfrac{{{z^2} - {a^2} + {a^2}}}{{{a^2} + {z^2}}}dz = dx\]
\[ \Rightarrow \left( {1 - \dfrac{{{a^2}}}{{{a^2} + {z^2}}}} \right)dz = dx\]
Taking integration on both sides:
\[ \Rightarrow \int {dz} - \int {\dfrac{{{a^2}}}{{{a^2} + {z^2}}}dz} = \int {dx} \]
\[ \Rightarrow z - {a^2} \cdot \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{z}{a} = x + c\]
\[ \Rightarrow z - a{\tan ^{ - 1}}\dfrac{z}{a} = x + c\]
Substitute the value of z:
\[ \Rightarrow x + y - a{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{a}} \right) = x + c\]
\[ \Rightarrow x + y - x = a{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{a}} \right) + c\]
\[ \Rightarrow y = a{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{a}} \right) + c\]
Option ‘D’ is correct
Note: Students often do a mistake to integrate \[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} \]. They applied an incorrect formula that is \[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = {\tan ^{ - 1}}\dfrac{x}{a} + c\]. They forgot to multiply \[\dfrac{1}{a}\]. The correct formula is \[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + c\].
Formula Used: Integration formula:
\[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + c\]
Homogeneous equation: The function \[f\left( {x,y} \right)\] is homogeneous with degree n if \[f\left( {\lambda x,\lambda y} \right) = {\lambda ^n}f\left( {x,y} \right)\] where \[\lambda \] is nonzero constant.
Complete step by step solution: Given differential equation is
\[{\left( {x + y} \right)^2}\dfrac{{dy}}{{dx}} = {a^2}\]
Rewrite the above equation:
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{a^2}}}{{{{\left( {x + y} \right)}^2}}}\]
Compare equation (i) with \[\dfrac{{dy}}{{dx}} = f\left( {x,y} \right)\]
\[f\left( {x,y} \right) = \dfrac{{{a^2}}}{{{{\left( {x + y} \right)}^2}}}\]
Putting \[x = \lambda x\] and \[y = \lambda y\]
\[f\left( {\lambda x,\lambda y} \right) = \dfrac{{{a^2}}}{{{{\left( {\lambda x + \lambda y} \right)}^2}}}\]
\[ \Rightarrow f\left( {\lambda x,\lambda y} \right) = \dfrac{{{a^2}}}{{{\lambda ^2}{{\left( {x + y} \right)}^2}}}\]
\[ \Rightarrow f\left( {\lambda x,\lambda y} \right) = {\lambda ^{ - 2}}f\left( {x,y} \right)\]
The given differential equation is a homogenous with degree 2.
Since given differential equation is a homogenous equation, we will apply substitution method.
Assume that,
\[x + y = z\]
Differentiate both sides with respect to x:
\[ \Rightarrow 1 + \dfrac{{dy}}{{dx}} = \dfrac{{dz}}{{dx}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dz}}{{dx}} - 1\]
Substitute \[x + y = z\] and \[\dfrac{{dy}}{{dx}} = \dfrac{{dz}}{{dx}} - 1\] in the given differential equation:
\[{z^2}\left( {\dfrac{{dz}}{{dx}} - 1} \right) = {a^2}\]
\[ \Rightarrow \left( {\dfrac{{dz}}{{dx}} - 1} \right) = \dfrac{{{a^2}}}{{{z^2}}}\]
\[ \Rightarrow \dfrac{{dz}}{{dx}} - 1 + 1 = \dfrac{{{a^2}}}{{{z^2}}} + 1\]
Add 1 on both sides
\[ \Rightarrow \dfrac{{dz}}{{dx}} = \dfrac{{{a^2} + {z^2}}}{{{z^2}}}\]
\[ \Rightarrow \dfrac{{{z^2}dz}}{{{a^2} + {z^2}}} = dx\]
Add and subtract \[{a^2}\] with numerator:
\[ \Rightarrow \dfrac{{{z^2} - {a^2} + {a^2}}}{{{a^2} + {z^2}}}dz = dx\]
\[ \Rightarrow \left( {1 - \dfrac{{{a^2}}}{{{a^2} + {z^2}}}} \right)dz = dx\]
Taking integration on both sides:
\[ \Rightarrow \int {dz} - \int {\dfrac{{{a^2}}}{{{a^2} + {z^2}}}dz} = \int {dx} \]
\[ \Rightarrow z - {a^2} \cdot \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{z}{a} = x + c\]
\[ \Rightarrow z - a{\tan ^{ - 1}}\dfrac{z}{a} = x + c\]
Substitute the value of z:
\[ \Rightarrow x + y - a{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{a}} \right) = x + c\]
\[ \Rightarrow x + y - x = a{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{a}} \right) + c\]
\[ \Rightarrow y = a{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{a}} \right) + c\]
Option ‘D’ is correct
Note: Students often do a mistake to integrate \[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} \]. They applied an incorrect formula that is \[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = {\tan ^{ - 1}}\dfrac{x}{a} + c\]. They forgot to multiply \[\dfrac{1}{a}\]. The correct formula is \[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + c\].
Recently Updated Pages
Which of the following is true A ain ab B bcsubset class 11 maths JEE_Advanced

What is the value of the integral intlimits0pi esin class 11 maths JEE_Advanced

What is the value of the integral intlimits0pi dfracxtan class 11 maths JEE_Advanced

What is the value of the integral intlimits 11 sin class 11 maths JEE_Advanced

What is the value of the integral I intlimits01 xleft class 11 maths JEE_Advanced

What is the solution of the differential equation left class 11 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

JEE Advanced 2026 Notes

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

