
The value of $\mathop {\lim }\limits_{n \to \infty } \dfrac{{[r] + [2r] + [3r] + ... + [nr]}}{{{n^2}}}$ where $r$ is a non-zero real number and $[r]$ denotes the greatest integer less than or equal to $r$ , is equal to
A. $0$
B. $r$
C. $\dfrac{r}{2}$
D. $2r$
Answer
228.3k+ views
Hint: The greatest integer less than or equal to the number is returned by the greatest integer function. The biggest integer less than or equal to $x$ is denoted by the letter $[x]$. The specified number will be rounded to the nearest integer that is less than or equal to the number. We will use this information to express the greatest integer function of $r$ in terms of the squeeze theorem and thus find the given limit.
Formula used: The squeeze theorem is a theorem in calculus about the limit of a function squeezed between two other functions. According to squeeze (or sandwich) theorem, if $\mathop {\lim }\limits_{x \to \infty } f(x) = \mathop {\lim }\limits_{x \to \infty } h(x)$
then $\mathop {\lim }\limits_{x \to \infty } g(x) = l$
Complete step by step solution:
It is given that $[r]$ is the greatest integer function, so –
$
r - 1 < [r] \leqslant r \\
2r - 1 < [2r] \leqslant 2r \\
3r - 1 < [3r] \leqslant 3r \\
. \\
. \\
. \\
nr - 1 < [nr] \leqslant nr \\
$
Adding all the above equations, we get –
$
r - 1 + 2r - 1 + 3r - 1...nr - 1 < [r] + [2r] + [3r] + ... + [nr] \leqslant r + 2r + 3r + ... + nr \\
r(1 + 2 + 3 + ... + n) - n < [r] + [2r] + [3r] + ... + [nr] \leqslant r(1 + 2 + 3 + ... + n) \\
$
Dividing all the sides by ${n^2}$ and putting $1 + 2 + 3 + .... + n = \dfrac{{n(n + 1)}}{2}$ , we get –
$
\dfrac{{rn(n + 1)}}{{2{n^2}}} - \dfrac{n}{{{n^2}}} < \dfrac{{[r] + [2r] + [3r] + ... + [nr]}}{{{n^2}}} \leqslant \dfrac{{rn(n + 1)}}{{2{n^2}}} \\
\dfrac{r}{2}(1 + \dfrac{1}{n}) - \dfrac{1}{n} < \dfrac{{[r] + [2r] + [3r] + ... + [nr]}}{{{n^2}}} \leqslant \dfrac{r}{2}(1 + \dfrac{1}{n}) \\
$
Now, $\mathop {\lim }\limits_{n \to \infty } \dfrac{r}{2}(1 + \dfrac{1}{n}) = \dfrac{r}{2}$
And $\mathop {\lim }\limits_{n \to \infty } \dfrac{r}{2}(1 + \dfrac{1}{n}) - \dfrac{1}{n} = \dfrac{r}{2}$
Now, according to sandwich theorem, if $\mathop {\lim }\limits_{x \to \infty } f(x) = \mathop {\lim }\limits_{x \to \infty } h(x)$
Then $\mathop {\lim }\limits_{x \to \infty } g(x) = l$
The squeeze theorem also works if $f(x) < g(x) \leqslant h(x)$
So, we get $\mathop {\lim }\limits_{n \to \infty } \dfrac{{[r] + [2r] + [3r] + .... + [nr]}}{{{n^2}}} = \dfrac{r}{2}$
Thus, the correct option is C.
Note: To understand greatest integer function more clearly, look at this example of a greatest integer function - $[1.9] = 1$ , so we see that $0.9 < [1.9] \leqslant 1.9$ , that’s why we use the relation $r - 1 < [r] \leqslant r$ in the above solution. To find the limit of a given function when the variable tends to infinity, we express the function such that the variable is present only in the denominator of a constant like in this we expressed the function as $\dfrac{1}{n}$.
Formula used: The squeeze theorem is a theorem in calculus about the limit of a function squeezed between two other functions. According to squeeze (or sandwich) theorem, if $\mathop {\lim }\limits_{x \to \infty } f(x) = \mathop {\lim }\limits_{x \to \infty } h(x)$
then $\mathop {\lim }\limits_{x \to \infty } g(x) = l$
Complete step by step solution:
It is given that $[r]$ is the greatest integer function, so –
$
r - 1 < [r] \leqslant r \\
2r - 1 < [2r] \leqslant 2r \\
3r - 1 < [3r] \leqslant 3r \\
. \\
. \\
. \\
nr - 1 < [nr] \leqslant nr \\
$
Adding all the above equations, we get –
$
r - 1 + 2r - 1 + 3r - 1...nr - 1 < [r] + [2r] + [3r] + ... + [nr] \leqslant r + 2r + 3r + ... + nr \\
r(1 + 2 + 3 + ... + n) - n < [r] + [2r] + [3r] + ... + [nr] \leqslant r(1 + 2 + 3 + ... + n) \\
$
Dividing all the sides by ${n^2}$ and putting $1 + 2 + 3 + .... + n = \dfrac{{n(n + 1)}}{2}$ , we get –
$
\dfrac{{rn(n + 1)}}{{2{n^2}}} - \dfrac{n}{{{n^2}}} < \dfrac{{[r] + [2r] + [3r] + ... + [nr]}}{{{n^2}}} \leqslant \dfrac{{rn(n + 1)}}{{2{n^2}}} \\
\dfrac{r}{2}(1 + \dfrac{1}{n}) - \dfrac{1}{n} < \dfrac{{[r] + [2r] + [3r] + ... + [nr]}}{{{n^2}}} \leqslant \dfrac{r}{2}(1 + \dfrac{1}{n}) \\
$
Now, $\mathop {\lim }\limits_{n \to \infty } \dfrac{r}{2}(1 + \dfrac{1}{n}) = \dfrac{r}{2}$
And $\mathop {\lim }\limits_{n \to \infty } \dfrac{r}{2}(1 + \dfrac{1}{n}) - \dfrac{1}{n} = \dfrac{r}{2}$
Now, according to sandwich theorem, if $\mathop {\lim }\limits_{x \to \infty } f(x) = \mathop {\lim }\limits_{x \to \infty } h(x)$
Then $\mathop {\lim }\limits_{x \to \infty } g(x) = l$
The squeeze theorem also works if $f(x) < g(x) \leqslant h(x)$
So, we get $\mathop {\lim }\limits_{n \to \infty } \dfrac{{[r] + [2r] + [3r] + .... + [nr]}}{{{n^2}}} = \dfrac{r}{2}$
Thus, the correct option is C.
Note: To understand greatest integer function more clearly, look at this example of a greatest integer function - $[1.9] = 1$ , so we see that $0.9 < [1.9] \leqslant 1.9$ , that’s why we use the relation $r - 1 < [r] \leqslant r$ in the above solution. To find the limit of a given function when the variable tends to infinity, we express the function such that the variable is present only in the denominator of a constant like in this we expressed the function as $\dfrac{1}{n}$.
Recently Updated Pages
What is the inverse of A left beginarray20cabcdendarray class 12 maths JEE_Advanced

The value of mathop lim limitsn to infty dfracr + 2r class 12 maths JEE_Advanced

What is the adjoint of A left beginarray20c3 342 340 class 12 maths JEE_Advanced

If rmX is a square matrix of order rm3 times rm3and class 12 maths JEE_Advanced

IfA left beginarray20c 122 1endarray right B left beginarray20c31endarray class 12 maths JEE_Advanced

What is the value of the integral int left dfracleft class 12 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Other Pages
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

