
What is the value of the integral \[\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} \]?
A. \[\dfrac{{{\pi ^2}}}{4}\]
B. \[\dfrac{{{\pi ^2}}}{2}\]
C. \[\dfrac{{3{\pi ^2}}}{2}\]
D. \[\dfrac{{{\pi ^2}}}{3}\]
Answer
213k+ views
Hint: Here, a definite integral is given. First, apply the property of the definite integral \[\int\limits_0^a {f\left( x \right) dx} = \int\limits_0^a {f\left( {a - x} \right) dx} \] and rewrite the given integral. Then, add both integrals and simplify it. After that, solve the right-hand side by using the basic trigonometric ratios. Then, substitute \[\cos x = u\] in the given integral and calculate the new values of the upper and lower limits. Simplify the integral by applying the integral property \[\int\limits_b^a {f\left( x \right) dx} = - \int\limits_a^b {f\left( x \right) dx} \]. In the end, solve apply the upper and lower limit of the integration and solve it to get the required answer.
Formula Used: Properties of definite integral:
\[\int\limits_b^a {f\left( x \right) dx} = - \int\limits_a^b {f\left( x \right) dx} \]
\[\int\limits_0^a {f\left( x \right) dx} = \int\limits_0^a {f\left( {a - x} \right) dx} \]
Trigonometric ratios:
\[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
\[\sec x = \dfrac{1}{{\cos x}}\]
Integration Formula: \[\int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}} {\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\] , where \[a\] is a constant.
Complete step by step solution: The given definite integral is \[\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} \].
Let consider,
\[I = \int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} \]
Apply the property of the definite integral \[\int\limits_0^a {f\left( x \right) dx} = \int\limits_0^a {f\left( {a - x} \right) dx} \] on the right-hand side.
We get,
\[I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan \left( {\pi - x} \right)}}{{\sec \left( {\pi - x} \right) + \cos \left( {\pi - x} \right)}} dx} \]
\[ \Rightarrow I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}} dx} \]
Now add above equation with the given equation.
\[2I = \int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} + \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}} dx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left[ {\dfrac{{x\tan x}}{{\sec x + \cos x}} + \dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}}} \right] dx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left[ {\dfrac{{\left( {x + \pi - x} \right)\tan x}}{{\sec x + \cos x}}} \right] dx} \]
\[ \Rightarrow 2I = \pi \int\limits_0^\pi {\dfrac{{\tan x}}{{\sec x + \cos x}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\tan x}}{{\sec x + \cos x}} dx} \]
Rewrite the right-hand side by using the basic trigonometric ratios.
\[I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{1}{{\cos x}} + \cos x}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{{1 + {{\cos }^2}x}}{{\cos x}}}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}} dx} \] \[.....\left( 1 \right)\]
Now substitute \[\cos x = u\] in the above equation.
Differentiate the substituting equation, we get
\[ - \sin xdx = du\]
\[ \Rightarrow \sin xdx = - du\]
And limits changes as follows:
\[x = 0 \Rightarrow u = 1\] and \[x = \pi \Rightarrow u = - 1\]
We get the equation \[\left( 1 \right)\] as follows:
\[I = \dfrac{\pi }{2}\int\limits_1^{ - 1} {\dfrac{{ - du}}{{1 + {u^2}}}} \]
Apply the property of definite integral \[\int\limits_b^a {f\left( x \right) dx} = - \int\limits_a^b {f\left( x \right) dx} \] on the right-hand side.
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{ - 1}^1 {\dfrac{{du}}{{1 + {u^2}}}} \]
Solve the integral by using the standard integral formula \[\int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}} {\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\].
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {{{\tan }^{ - 1}}u} \right]_{ - 1}^1\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {{{\tan }^{ - 1}}\left( 1 \right) - {{\tan }^{ - 1}}\left( { - 1} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{4} - \left( { - \dfrac{\pi }{4}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{4} + \dfrac{\pi }{4}} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{2}} \right]\]
\[ \Rightarrow I = \dfrac{{{\pi ^2}}}{4}\]
Therefore,
\[\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} = \dfrac{{{\pi ^2}}}{4}\]
Option ‘A’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Formula Used: Properties of definite integral:
\[\int\limits_b^a {f\left( x \right) dx} = - \int\limits_a^b {f\left( x \right) dx} \]
\[\int\limits_0^a {f\left( x \right) dx} = \int\limits_0^a {f\left( {a - x} \right) dx} \]
Trigonometric ratios:
\[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
\[\sec x = \dfrac{1}{{\cos x}}\]
Integration Formula: \[\int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}} {\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\] , where \[a\] is a constant.
Complete step by step solution: The given definite integral is \[\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} \].
Let consider,
\[I = \int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} \]
Apply the property of the definite integral \[\int\limits_0^a {f\left( x \right) dx} = \int\limits_0^a {f\left( {a - x} \right) dx} \] on the right-hand side.
We get,
\[I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan \left( {\pi - x} \right)}}{{\sec \left( {\pi - x} \right) + \cos \left( {\pi - x} \right)}} dx} \]
\[ \Rightarrow I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}} dx} \]
Now add above equation with the given equation.
\[2I = \int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} + \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}} dx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left[ {\dfrac{{x\tan x}}{{\sec x + \cos x}} + \dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}}} \right] dx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left[ {\dfrac{{\left( {x + \pi - x} \right)\tan x}}{{\sec x + \cos x}}} \right] dx} \]
\[ \Rightarrow 2I = \pi \int\limits_0^\pi {\dfrac{{\tan x}}{{\sec x + \cos x}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\tan x}}{{\sec x + \cos x}} dx} \]
Rewrite the right-hand side by using the basic trigonometric ratios.
\[I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{1}{{\cos x}} + \cos x}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{{1 + {{\cos }^2}x}}{{\cos x}}}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}} dx} \] \[.....\left( 1 \right)\]
Now substitute \[\cos x = u\] in the above equation.
Differentiate the substituting equation, we get
\[ - \sin xdx = du\]
\[ \Rightarrow \sin xdx = - du\]
And limits changes as follows:
\[x = 0 \Rightarrow u = 1\] and \[x = \pi \Rightarrow u = - 1\]
We get the equation \[\left( 1 \right)\] as follows:
\[I = \dfrac{\pi }{2}\int\limits_1^{ - 1} {\dfrac{{ - du}}{{1 + {u^2}}}} \]
Apply the property of definite integral \[\int\limits_b^a {f\left( x \right) dx} = - \int\limits_a^b {f\left( x \right) dx} \] on the right-hand side.
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{ - 1}^1 {\dfrac{{du}}{{1 + {u^2}}}} \]
Solve the integral by using the standard integral formula \[\int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}} {\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\].
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {{{\tan }^{ - 1}}u} \right]_{ - 1}^1\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {{{\tan }^{ - 1}}\left( 1 \right) - {{\tan }^{ - 1}}\left( { - 1} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{4} - \left( { - \dfrac{\pi }{4}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{4} + \dfrac{\pi }{4}} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{2}} \right]\]
\[ \Rightarrow I = \dfrac{{{\pi ^2}}}{4}\]
Therefore,
\[\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} = \dfrac{{{\pi ^2}}}{4}\]
Option ‘A’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Recently Updated Pages
Which of the following is true A ain ab B bcsubset class 11 maths JEE_Advanced

What is the value of the integral intlimits0pi esin class 11 maths JEE_Advanced

What is the value of the integral intlimits0pi dfracxtan class 11 maths JEE_Advanced

What is the value of the integral intlimits 11 sin class 11 maths JEE_Advanced

What is the value of the integral I intlimits01 xleft class 11 maths JEE_Advanced

What is the solution of the differential equation left class 11 maths JEE_Advanced

Trending doubts
MHT CET 2025: Exam Date PCM and PCB (OUT), Application Form (Open), Eligibility and Syllabus Updates

Difference Between Line Voltage and Phase Voltage

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

JEE Advanced Marks Vs Rank 2025 – Understanding the Category-wise IIT Ranks Based on Scores

List of Engineering Colleges in India: 2025 Rankings, Courses, Fees & Placements

Difference Between Concave and Convex Lens

Other Pages
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Atomic Structure: Definition, Models, and Examples

Degree of Dissociation: Meaning, Formula, Calculation & Uses

NCERT Solutions for Class 11 Maths Chapter 7 Binomial Theorem

Average and RMS Value in Physics: Formula, Comparison & Application

NCERT Solutions For Class 11 Maths Chapter 11 Introduction To Three Dimensional Geometry - 2025-26

