
What is the value of the integral \[\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} \]?
A. \[\dfrac{{{\pi ^2}}}{4}\]
B. \[\dfrac{{{\pi ^2}}}{2}\]
C. \[\dfrac{{3{\pi ^2}}}{2}\]
D. \[\dfrac{{{\pi ^2}}}{3}\]
Answer
221.7k+ views
Hint: Here, a definite integral is given. First, apply the property of the definite integral \[\int\limits_0^a {f\left( x \right) dx} = \int\limits_0^a {f\left( {a - x} \right) dx} \] and rewrite the given integral. Then, add both integrals and simplify it. After that, solve the right-hand side by using the basic trigonometric ratios. Then, substitute \[\cos x = u\] in the given integral and calculate the new values of the upper and lower limits. Simplify the integral by applying the integral property \[\int\limits_b^a {f\left( x \right) dx} = - \int\limits_a^b {f\left( x \right) dx} \]. In the end, solve apply the upper and lower limit of the integration and solve it to get the required answer.
Formula Used: Properties of definite integral:
\[\int\limits_b^a {f\left( x \right) dx} = - \int\limits_a^b {f\left( x \right) dx} \]
\[\int\limits_0^a {f\left( x \right) dx} = \int\limits_0^a {f\left( {a - x} \right) dx} \]
Trigonometric ratios:
\[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
\[\sec x = \dfrac{1}{{\cos x}}\]
Integration Formula: \[\int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}} {\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\] , where \[a\] is a constant.
Complete step by step solution: The given definite integral is \[\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} \].
Let consider,
\[I = \int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} \]
Apply the property of the definite integral \[\int\limits_0^a {f\left( x \right) dx} = \int\limits_0^a {f\left( {a - x} \right) dx} \] on the right-hand side.
We get,
\[I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan \left( {\pi - x} \right)}}{{\sec \left( {\pi - x} \right) + \cos \left( {\pi - x} \right)}} dx} \]
\[ \Rightarrow I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}} dx} \]
Now add above equation with the given equation.
\[2I = \int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} + \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}} dx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left[ {\dfrac{{x\tan x}}{{\sec x + \cos x}} + \dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}}} \right] dx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left[ {\dfrac{{\left( {x + \pi - x} \right)\tan x}}{{\sec x + \cos x}}} \right] dx} \]
\[ \Rightarrow 2I = \pi \int\limits_0^\pi {\dfrac{{\tan x}}{{\sec x + \cos x}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\tan x}}{{\sec x + \cos x}} dx} \]
Rewrite the right-hand side by using the basic trigonometric ratios.
\[I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{1}{{\cos x}} + \cos x}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{{1 + {{\cos }^2}x}}{{\cos x}}}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}} dx} \] \[.....\left( 1 \right)\]
Now substitute \[\cos x = u\] in the above equation.
Differentiate the substituting equation, we get
\[ - \sin xdx = du\]
\[ \Rightarrow \sin xdx = - du\]
And limits changes as follows:
\[x = 0 \Rightarrow u = 1\] and \[x = \pi \Rightarrow u = - 1\]
We get the equation \[\left( 1 \right)\] as follows:
\[I = \dfrac{\pi }{2}\int\limits_1^{ - 1} {\dfrac{{ - du}}{{1 + {u^2}}}} \]
Apply the property of definite integral \[\int\limits_b^a {f\left( x \right) dx} = - \int\limits_a^b {f\left( x \right) dx} \] on the right-hand side.
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{ - 1}^1 {\dfrac{{du}}{{1 + {u^2}}}} \]
Solve the integral by using the standard integral formula \[\int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}} {\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\].
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {{{\tan }^{ - 1}}u} \right]_{ - 1}^1\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {{{\tan }^{ - 1}}\left( 1 \right) - {{\tan }^{ - 1}}\left( { - 1} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{4} - \left( { - \dfrac{\pi }{4}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{4} + \dfrac{\pi }{4}} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{2}} \right]\]
\[ \Rightarrow I = \dfrac{{{\pi ^2}}}{4}\]
Therefore,
\[\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} = \dfrac{{{\pi ^2}}}{4}\]
Option ‘A’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Formula Used: Properties of definite integral:
\[\int\limits_b^a {f\left( x \right) dx} = - \int\limits_a^b {f\left( x \right) dx} \]
\[\int\limits_0^a {f\left( x \right) dx} = \int\limits_0^a {f\left( {a - x} \right) dx} \]
Trigonometric ratios:
\[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
\[\sec x = \dfrac{1}{{\cos x}}\]
Integration Formula: \[\int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}} {\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\] , where \[a\] is a constant.
Complete step by step solution: The given definite integral is \[\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} \].
Let consider,
\[I = \int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} \]
Apply the property of the definite integral \[\int\limits_0^a {f\left( x \right) dx} = \int\limits_0^a {f\left( {a - x} \right) dx} \] on the right-hand side.
We get,
\[I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan \left( {\pi - x} \right)}}{{\sec \left( {\pi - x} \right) + \cos \left( {\pi - x} \right)}} dx} \]
\[ \Rightarrow I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}} dx} \]
Now add above equation with the given equation.
\[2I = \int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} + \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}} dx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left[ {\dfrac{{x\tan x}}{{\sec x + \cos x}} + \dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}}} \right] dx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left[ {\dfrac{{\left( {x + \pi - x} \right)\tan x}}{{\sec x + \cos x}}} \right] dx} \]
\[ \Rightarrow 2I = \pi \int\limits_0^\pi {\dfrac{{\tan x}}{{\sec x + \cos x}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\tan x}}{{\sec x + \cos x}} dx} \]
Rewrite the right-hand side by using the basic trigonometric ratios.
\[I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{1}{{\cos x}} + \cos x}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{{1 + {{\cos }^2}x}}{{\cos x}}}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}} dx} \] \[.....\left( 1 \right)\]
Now substitute \[\cos x = u\] in the above equation.
Differentiate the substituting equation, we get
\[ - \sin xdx = du\]
\[ \Rightarrow \sin xdx = - du\]
And limits changes as follows:
\[x = 0 \Rightarrow u = 1\] and \[x = \pi \Rightarrow u = - 1\]
We get the equation \[\left( 1 \right)\] as follows:
\[I = \dfrac{\pi }{2}\int\limits_1^{ - 1} {\dfrac{{ - du}}{{1 + {u^2}}}} \]
Apply the property of definite integral \[\int\limits_b^a {f\left( x \right) dx} = - \int\limits_a^b {f\left( x \right) dx} \] on the right-hand side.
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{ - 1}^1 {\dfrac{{du}}{{1 + {u^2}}}} \]
Solve the integral by using the standard integral formula \[\int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}} {\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\].
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {{{\tan }^{ - 1}}u} \right]_{ - 1}^1\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {{{\tan }^{ - 1}}\left( 1 \right) - {{\tan }^{ - 1}}\left( { - 1} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{4} - \left( { - \dfrac{\pi }{4}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{4} + \dfrac{\pi }{4}} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{2}} \right]\]
\[ \Rightarrow I = \dfrac{{{\pi ^2}}}{4}\]
Therefore,
\[\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} = \dfrac{{{\pi ^2}}}{4}\]
Option ‘A’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Recently Updated Pages
Which of the following is true A ain ab B bcsubset class 11 maths JEE_Advanced

What is the value of the integral intlimits0pi esin class 11 maths JEE_Advanced

What is the value of the integral intlimits0pi dfracxtan class 11 maths JEE_Advanced

What is the value of the integral intlimits 11 sin class 11 maths JEE_Advanced

What is the value of the integral I intlimits01 xleft class 11 maths JEE_Advanced

What is the solution of the differential equation left class 11 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

JEE Advanced 2026 Notes

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

