
What is the value of the integral \[\int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} \], for any integer \[n\]?
A. \[ - 1\]
B. 0
C. 1
D. \[\pi \]
Answer
221.7k+ views
Hint: Here, a definite integral is given. First, consider the term present in the given integral as \[f\left( x \right) = {e^{{{\sin }^2}x}}{\cos ^3}\left( {2n + 1} \right)x\]. Then calculate the value of \[f\left( {\pi - x} \right)\] by using the trigonometric properties. After that, substitute the values in the integration rule \[\int\limits_0^{2a} {f\left( x \right) dx} = \int\limits_0^a {f\left( x \right) dx} + \int\limits_0^a {f\left( {2a - x} \right) dx} \] and solve it to get the required answer.
Formula Used: \[{\sin ^n}\left( {\pi - \theta } \right) = \sin \theta \]
\[{\cos ^n}\left( {\pi - \theta } \right) = - {\cos ^n}\theta \], if \[n\] is odd number.
Integration Rule: \[\int\limits_0^{2a} {f\left( x \right) dx} = \int\limits_0^a {f\left( x \right) dx} + \int\limits_0^a {f\left( {2a - x} \right) dx} \]
Complete step by step solution: The given definite integral is \[\int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} \].
Let consider,
\[f\left( x \right) = {e^{{{\sin }^2}x}}{\cos ^3}\left( {2n + 1} \right)x\]
Now let’s calculate the value of \[f\left( {\pi - x} \right)\].
\[f\left( {\pi - x} \right) = {e^{{{\sin }^2}\left( {\pi - x} \right)}}{\cos ^3}\left( {2n + 1} \right)\left( {\pi - x} \right)\]
\[ \Rightarrow f\left( {\pi - x} \right) = {e^{{{\sin }^2}\left( {\pi - x} \right)}}{\cos ^3}\left[ {\left( {2n + 1} \right)\pi - \left( {2n + 1} \right)x} \right]\]
Apply the trigonometric properties \[{\sin ^n}\left( {\pi - \theta } \right) = \sin \theta \] and \[{\cos ^n}\left( {\pi - \theta } \right) = - {\cos ^n}\theta \], if \[n\] is odd number.
\[ \Rightarrow f\left( {\pi - x} \right) = {e^{{{\sin }^2}x}}\left[ { - {{\cos }^3}\left( {2n + 1} \right)x} \right]\]
\[ \Rightarrow f\left( {\pi - x} \right) = - {e^{{{\sin }^2}x}}{\cos ^3}\left( {2n + 1} \right)x\]
\[ \Rightarrow f\left( {\pi - x} \right) = - f\left( x \right)\]
Now apply the rule of the definite integral \[\int\limits_0^{2a} {f\left( x \right) dx} = \int\limits_0^a {f\left( x \right) dx} + \int\limits_0^a {f\left( {2a - x} \right) dx} \]
We get,
\[\int\limits_0^\pi {f\left( x \right)dx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} + \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\pi - x} \right)dx} \]
Substitute the values in the above integral equation.
\[\int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} + \int\limits_0^{\dfrac{\pi }{2}} { - f\left( x \right)dx} \]
\[ \Rightarrow \int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} - \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} \]
\[ \Rightarrow \int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = 0\]
Option ‘B’ is correct
Note: Sometimes students get confused and try to solve the integral by using the trigonometric identities. We can solve this integral by using the methods of indefinite integral. But the answer will be wrong.
So, to calculate the correct answer in the definite integral, first check the behaviour of the trigonometric functions for the different exponents and intervals.
Formula Used: \[{\sin ^n}\left( {\pi - \theta } \right) = \sin \theta \]
\[{\cos ^n}\left( {\pi - \theta } \right) = - {\cos ^n}\theta \], if \[n\] is odd number.
Integration Rule: \[\int\limits_0^{2a} {f\left( x \right) dx} = \int\limits_0^a {f\left( x \right) dx} + \int\limits_0^a {f\left( {2a - x} \right) dx} \]
Complete step by step solution: The given definite integral is \[\int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} \].
Let consider,
\[f\left( x \right) = {e^{{{\sin }^2}x}}{\cos ^3}\left( {2n + 1} \right)x\]
Now let’s calculate the value of \[f\left( {\pi - x} \right)\].
\[f\left( {\pi - x} \right) = {e^{{{\sin }^2}\left( {\pi - x} \right)}}{\cos ^3}\left( {2n + 1} \right)\left( {\pi - x} \right)\]
\[ \Rightarrow f\left( {\pi - x} \right) = {e^{{{\sin }^2}\left( {\pi - x} \right)}}{\cos ^3}\left[ {\left( {2n + 1} \right)\pi - \left( {2n + 1} \right)x} \right]\]
Apply the trigonometric properties \[{\sin ^n}\left( {\pi - \theta } \right) = \sin \theta \] and \[{\cos ^n}\left( {\pi - \theta } \right) = - {\cos ^n}\theta \], if \[n\] is odd number.
\[ \Rightarrow f\left( {\pi - x} \right) = {e^{{{\sin }^2}x}}\left[ { - {{\cos }^3}\left( {2n + 1} \right)x} \right]\]
\[ \Rightarrow f\left( {\pi - x} \right) = - {e^{{{\sin }^2}x}}{\cos ^3}\left( {2n + 1} \right)x\]
\[ \Rightarrow f\left( {\pi - x} \right) = - f\left( x \right)\]
Now apply the rule of the definite integral \[\int\limits_0^{2a} {f\left( x \right) dx} = \int\limits_0^a {f\left( x \right) dx} + \int\limits_0^a {f\left( {2a - x} \right) dx} \]
We get,
\[\int\limits_0^\pi {f\left( x \right)dx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} + \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\pi - x} \right)dx} \]
Substitute the values in the above integral equation.
\[\int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} + \int\limits_0^{\dfrac{\pi }{2}} { - f\left( x \right)dx} \]
\[ \Rightarrow \int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} - \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} \]
\[ \Rightarrow \int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = 0\]
Option ‘B’ is correct
Note: Sometimes students get confused and try to solve the integral by using the trigonometric identities. We can solve this integral by using the methods of indefinite integral. But the answer will be wrong.
So, to calculate the correct answer in the definite integral, first check the behaviour of the trigonometric functions for the different exponents and intervals.
Recently Updated Pages
Crack JEE Advanced 2026 with Vedantu's Live Classes

JEE Advanced 2021 Physics Question Paper 2 with Solutions

JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2022 Physics Question Paper 2 with Solutions

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

JEE Advanced 2026 Notes

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

