
A uniform ring of mass $m$ and radius $R$ can rotate freely about an axis passing through the center $C$ perpendicular to the plane of paper. Half of the ring is positively charged and the other half of the ring is negatively charged. Uniform electric field ${E_a}$ is switched along –ve x-axis (axis are shown in figure).Find the angular velocity of the ring after rotation of 180 degrees. (Magnitude charge density $\lambda $ )

Answer
228k+ views
Hint: Use the formula of the shear stress given below and substitute the value of the parameters in it. Use the formula of the energy given below and substitute the calculated value of the shear stress and other parameters to find the value of the angular velocity.
Formula used:
(1) The formula of the shear stress is given by
$\tau = F \times 2d$
Where $\tau $ is the shear stress, $F$ is the force acting on the mass and $d$ is the distance of the force from the mass.
(2) The kinetic energy is given by
$E = \dfrac{1}{2}m{v^2}$
Where $E$ is the energy, $m$ is the mass of the object and $v$ is the velocity of it.
Complete step by step solution:
Let us interpret the diagram.
By using the formula of the shear stress,
$\tau = F \times 2d$
From the diagram it is clear that the distance is $\dfrac{{2R}}{\pi }$ , and the formula of the force is given by $F = \pi R\lambda $ . Substituting both of these values in the above formula, we get
$\Rightarrow$ $\tau = \pi R\lambda \times 2 \times \dfrac{{2R}}{\pi }$
By cancelling the similar terms and simplification of the above equation, we get
$\Rightarrow$ \[\tau = 4{R^2}\lambda {E_0}\]
Then using the formula of the energy,
$\Rightarrow$ $E = \dfrac{1}{2}m{\omega ^2}$
The shear stress is the kinetic energy produced and also the mass of the body is $R$ and hence substituting these in the above formula, we get
$\Rightarrow$ $4\pi \lambda {E_0} = \dfrac{1}{2}m{R^2}{\omega ^2}$
By cancelling the similar terms on both sides of the equation and further simplification of the above equation,
$\Rightarrow$ $\omega = \sqrt {\dfrac{{8\lambda {E_0}}}{m}} $
Note: Here the ring of the certain mass is rotated due to the presence of the half positive charge and half negatively charged. And hence the rotation motion takes place. That is the reason the kinetic energy formula is substituted with the angular velocity in place of the normal velocity of the mass.
Formula used:
(1) The formula of the shear stress is given by
$\tau = F \times 2d$
Where $\tau $ is the shear stress, $F$ is the force acting on the mass and $d$ is the distance of the force from the mass.
(2) The kinetic energy is given by
$E = \dfrac{1}{2}m{v^2}$
Where $E$ is the energy, $m$ is the mass of the object and $v$ is the velocity of it.
Complete step by step solution:
Let us interpret the diagram.
By using the formula of the shear stress,
$\tau = F \times 2d$
From the diagram it is clear that the distance is $\dfrac{{2R}}{\pi }$ , and the formula of the force is given by $F = \pi R\lambda $ . Substituting both of these values in the above formula, we get
$\Rightarrow$ $\tau = \pi R\lambda \times 2 \times \dfrac{{2R}}{\pi }$
By cancelling the similar terms and simplification of the above equation, we get
$\Rightarrow$ \[\tau = 4{R^2}\lambda {E_0}\]
Then using the formula of the energy,
$\Rightarrow$ $E = \dfrac{1}{2}m{\omega ^2}$
The shear stress is the kinetic energy produced and also the mass of the body is $R$ and hence substituting these in the above formula, we get
$\Rightarrow$ $4\pi \lambda {E_0} = \dfrac{1}{2}m{R^2}{\omega ^2}$
By cancelling the similar terms on both sides of the equation and further simplification of the above equation,
$\Rightarrow$ $\omega = \sqrt {\dfrac{{8\lambda {E_0}}}{m}} $
Note: Here the ring of the certain mass is rotated due to the presence of the half positive charge and half negatively charged. And hence the rotation motion takes place. That is the reason the kinetic energy formula is substituted with the angular velocity in place of the normal velocity of the mass.
Recently Updated Pages
Graphical Methods of Vector Addition Explained Simply

Geostationary vs Geosynchronous Satellites: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

Fusion Reaction in the Sun Explained: Simple Guide for Students

Functional Equations Explained: Key Concepts & Practice

Froth Flotation Principle and Process Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Derivation of Equation of Trajectory Explained for Students

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding the Electric Field of a Uniformly Charged Ring

