
A uniform rod of mass $m = 15kg$ leans against a smooth vertical wall making an angle $\theta = {37^ \circ }$ with horizontal. The other end rests on a rough horizontal floor. Calculate the normal force and the friction force that the floor exerts on the rod.
Answer
187.8k+ views
Hint: In this problem we are going to write first all the forces which are acting on the rod. These include gravitational force, normal force and frictional force. And then by applying force balance we are going to get normal and friction force that the floor exerts on the rod.
Complete answer:
The forces acting on the rod are
(a) Its weight W,
(b) normal force N, by the vertical wall,
(c) normal force $N_2$ by the floor and
(d) frictional force f by the floor.
Taking horizontal and vertical components,
${N_1} = f$------(1)
And ${N_2} = mg$------(2)
Taking torque about ground we get,
${N_1}x\cos \theta = mg\dfrac{x}{2}\sin \theta $
$ \Rightarrow {N_1}\dfrac{3}{5} = mg\dfrac{1}{2} \times \dfrac{4}{5}$
$ \Rightarrow {N_1} = mg \times \dfrac{2}{3}$
So, ${N_1} = 100N$ also the$f = 100N$
The normal force by floor ${N_2} = mg = 150N$
Note: While attempting this type of question, always remember to apply force balance. The balance forces plays an important role to solve the above question. It is important note that, in this case we considered the object to be at static motion thus we haven’t used any value related to motion and velocity.
Complete answer:
The forces acting on the rod are
(a) Its weight W,
(b) normal force N, by the vertical wall,
(c) normal force $N_2$ by the floor and
(d) frictional force f by the floor.
Taking horizontal and vertical components,
${N_1} = f$------(1)
And ${N_2} = mg$------(2)
Taking torque about ground we get,
${N_1}x\cos \theta = mg\dfrac{x}{2}\sin \theta $
$ \Rightarrow {N_1}\dfrac{3}{5} = mg\dfrac{1}{2} \times \dfrac{4}{5}$
$ \Rightarrow {N_1} = mg \times \dfrac{2}{3}$
So, ${N_1} = 100N$ also the$f = 100N$
The normal force by floor ${N_2} = mg = 150N$
Note: While attempting this type of question, always remember to apply force balance. The balance forces plays an important role to solve the above question. It is important note that, in this case we considered the object to be at static motion thus we haven’t used any value related to motion and velocity.
Recently Updated Pages
Uniform Acceleration: Definition, Equations & Graphs for JEE/NEET

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Electrical Resistance - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Collision: Meaning, Types & Examples in Physics

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26
