
What is the rise in temperature of a collective drop when initially 1gm and 2gm drops travel with velocities \[10cm/sec\;\] and \[15cm/sec\]
A) \[6.6 \times {10^{ - 3}}\,^\circ C\]
B) \[66 \times {10^{ - 3}}\,^\circ C\]
C) \[660 \times {10^{ - 3}}\,^\circ C\]
D) \[6.6\,^\circ C\]
Answer
218.4k+ views
Hint: In this solution, we will calculate the kinetic energy of the drops before and after the collision. The decrease in kinetic energy will contribute to raising the temperature of the collective drop.
Formula used:
$Q = ms\Delta T$ where $Q$ is the energy needed to heat up a liquid by $\Delta T$ temperature difference and $s$ is the specific heat capacity of the liquid
Complete step by step answer:
We’ve been given the temperature of the drops as \[10cm/sec\; = 0.1\,m/s\] and \[15\,cm/sec\; = 0.15\,m/s\]. Let us start by calculating the velocity of the new drop. When the drops combine, the law of conservation of momentum holds true since there is no external force acting on the system. So, applying the law of conservation of momentum before and after coagulation, we get
${m_1}{v_1} + {m_2}{v_2} = m'v'$
Substituting ${m_1} = 1gm = 1 \times {10^{ - 3}}\,kg$, ${m_2} = 2gm = 2 \times {10^{ - 3}}\,kg$, \[{v_1} = 0.1\,m/sec\;\] and \[{v_2} = 0.15\,m/sec\], and $m' = {m_1} + {m_2} = 3 \times {10^{ - 3}}\,kg$ we get
$\left( {1 \times 0.1} \right) + (2 \times 0.15) = (1 + 2) \times v'$
Which gives us
$v = \dfrac{{40}}{3}\, \times {10^{ - 2}}\,m/s$
Now the kinetic energy of the two drops before the coagulation will be
${K_{init}} = \dfrac{1}{2} \times 1 \times {10^{ - 3}} \times {\left( {0.1} \right)^2} + \dfrac{1}{2} \times 2 \times {10^{ - 3}} \times {\left( {0.15} \right)^2}$
$ \Rightarrow {K_{init}} = 275 \times {10^{ - 7}}\,J$
Similarly, the kinetic energy after coagulating will be
${K_{final}} = \dfrac{1}{2}3 \times {10^{ - 3}} \times {\left( {\dfrac{{40}}{3}\, \times {{10}^{ - 2}}\,} \right)^2}$
$ \Rightarrow {K_{final}} = \dfrac{{800}}{3} \times {10^{ - 7}}\,J$
This difference in kinetic energy will raise the temperature of the water. The difference in kinetic energies will be
$\Delta K = \left( {275 - \dfrac{{800}}{3}} \right) \times {10^{ - 7}}$
$ \Rightarrow \Delta K = \dfrac{{25}}{3} \times {10^{ - 7}}\,J$
This difference will heat the drop according to the equation of specific heat as
$\Delta K = ms\Delta T$
So, substituting $\Delta K = \dfrac{{25}}{3} \times {10^{ - 7}}\,J$, $m = 3 \times {10^{ - 3}}\,kg$ and $s = 4.2$ for water, we get
$\dfrac{{25}}{3} \times {10^{ - 7}}\, = 3 \times {10^{ - 3}}\, \times 4.2 \times \Delta T$
So, the change in temperature will be
$\Delta T = \dfrac{{25}}{{9 \times 4.2}} = 66 \times {10^{ - 3}}\,^\circ C$
Hence the correct choice is option (B).
Note: Here we have assumed that all the difference in the kinetic energy will go to increasing the temperature of the drop however this is an ideal gas. In reality, there is some energy used when combining and as a result full conversion of kinetic to heat energy doesn’t occur.
Formula used:
$Q = ms\Delta T$ where $Q$ is the energy needed to heat up a liquid by $\Delta T$ temperature difference and $s$ is the specific heat capacity of the liquid
Complete step by step answer:
We’ve been given the temperature of the drops as \[10cm/sec\; = 0.1\,m/s\] and \[15\,cm/sec\; = 0.15\,m/s\]. Let us start by calculating the velocity of the new drop. When the drops combine, the law of conservation of momentum holds true since there is no external force acting on the system. So, applying the law of conservation of momentum before and after coagulation, we get
${m_1}{v_1} + {m_2}{v_2} = m'v'$
Substituting ${m_1} = 1gm = 1 \times {10^{ - 3}}\,kg$, ${m_2} = 2gm = 2 \times {10^{ - 3}}\,kg$, \[{v_1} = 0.1\,m/sec\;\] and \[{v_2} = 0.15\,m/sec\], and $m' = {m_1} + {m_2} = 3 \times {10^{ - 3}}\,kg$ we get
$\left( {1 \times 0.1} \right) + (2 \times 0.15) = (1 + 2) \times v'$
Which gives us
$v = \dfrac{{40}}{3}\, \times {10^{ - 2}}\,m/s$
Now the kinetic energy of the two drops before the coagulation will be
${K_{init}} = \dfrac{1}{2} \times 1 \times {10^{ - 3}} \times {\left( {0.1} \right)^2} + \dfrac{1}{2} \times 2 \times {10^{ - 3}} \times {\left( {0.15} \right)^2}$
$ \Rightarrow {K_{init}} = 275 \times {10^{ - 7}}\,J$
Similarly, the kinetic energy after coagulating will be
${K_{final}} = \dfrac{1}{2}3 \times {10^{ - 3}} \times {\left( {\dfrac{{40}}{3}\, \times {{10}^{ - 2}}\,} \right)^2}$
$ \Rightarrow {K_{final}} = \dfrac{{800}}{3} \times {10^{ - 7}}\,J$
This difference in kinetic energy will raise the temperature of the water. The difference in kinetic energies will be
$\Delta K = \left( {275 - \dfrac{{800}}{3}} \right) \times {10^{ - 7}}$
$ \Rightarrow \Delta K = \dfrac{{25}}{3} \times {10^{ - 7}}\,J$
This difference will heat the drop according to the equation of specific heat as
$\Delta K = ms\Delta T$
So, substituting $\Delta K = \dfrac{{25}}{3} \times {10^{ - 7}}\,J$, $m = 3 \times {10^{ - 3}}\,kg$ and $s = 4.2$ for water, we get
$\dfrac{{25}}{3} \times {10^{ - 7}}\, = 3 \times {10^{ - 3}}\, \times 4.2 \times \Delta T$
So, the change in temperature will be
$\Delta T = \dfrac{{25}}{{9 \times 4.2}} = 66 \times {10^{ - 3}}\,^\circ C$
Hence the correct choice is option (B).
Note: Here we have assumed that all the difference in the kinetic energy will go to increasing the temperature of the drop however this is an ideal gas. In reality, there is some energy used when combining and as a result full conversion of kinetic to heat energy doesn’t occur.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

