
The masses ${M_1}$ and ${M_2}({M_2} > {M_1})$ are released from rest. Using work energy theorem, find out the velocity of the blocks when they move a distance x.

(A) $V = \sqrt {\dfrac{{({M_2} - {M_1})gx}}{{{M_1} + {M_2}}}}$
(B) $V = \sqrt {\dfrac{{2({M_2} - {M_1})gx}}{{{M_1} + {M_2}}}}$
(C) $V = \sqrt {\dfrac{{3({M_2} - {M_1})gx}}{{{M_1} + {M_2}}}}$
(D) $V = \sqrt {\dfrac{{4({M_2} - {M_1})gx}}{{{M_1} + {M_2}}}}$
Answer
232.8k+ views
Hint We should know that the work-energy theorem gives us an idea that the net work done by the forces on an object which is equal to the change in the kinetic energy of the body. Based on this theorem we have to answer this question.
Complete step by step answer
We should know that the expression for the diagram is given as:
${({W_{all}})_{system}} = {(\Delta K)_{system}}$
Now the expression is evaluated as:
${({W_g})_{sys}} + {({W_T})_{sys}} = {(\Delta K)_{sys}}$
In this case,
${({W_T})_{sys}} = 0$
So, the expression now is given as:
${m_2}gx - {M_1}gx = \dfrac{1}{2}({M_1} + {M_2}){V^2} - 0......(i)$
So, the value of V after the evaluating is given as:
$V = \sqrt {\dfrac{{2({M_2} - {M_1})gx}}{{{M_1} + {M_2}}}}$
So, the correct answer is Option B.
Note From the work-energy theorem we get an idea that the new work that is occurring on the object will cause a change in the kinetic energy of the object. The main formula is given as net work equals the change in the kinetic energy which is also similar to the difference between final kinetic energy and the initial kinetic energy.
Complete step by step answer
We should know that the expression for the diagram is given as:
${({W_{all}})_{system}} = {(\Delta K)_{system}}$
Now the expression is evaluated as:
${({W_g})_{sys}} + {({W_T})_{sys}} = {(\Delta K)_{sys}}$
In this case,
${({W_T})_{sys}} = 0$
So, the expression now is given as:
${m_2}gx - {M_1}gx = \dfrac{1}{2}({M_1} + {M_2}){V^2} - 0......(i)$
So, the value of V after the evaluating is given as:
$V = \sqrt {\dfrac{{2({M_2} - {M_1})gx}}{{{M_1} + {M_2}}}}$
So, the correct answer is Option B.
Note From the work-energy theorem we get an idea that the new work that is occurring on the object will cause a change in the kinetic energy of the object. The main formula is given as net work equals the change in the kinetic energy which is also similar to the difference between final kinetic energy and the initial kinetic energy.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

