
The number of dπ - pπ bonds present respectively in \[S{{O}_{2}}\], \[S{{O}_{3}}\], \[Cl{{O}_{4}}^{-}\] are:
(A) 0,1,2
(B) 1,2,3
(C) 2,3,4
(D) 2,3,3
Answer
218.1k+ views
Hint: pπ-dπ bonds will be formed when π bonds are more than the number of unhybridized p orbitals left. First pπ-pπ bonds are formed, after that pπ-dπ if there are not enough p orbitals left for multiple bond formation.
Complete step by step solution:
Now in the given question, in \[S{{O}_{2}}\], sulphur has six valence electrons (\[3{{s}^{2}}3{{p}^{4}}\]) and it forms bond with two oxygen atoms, the sulphur atom forms one sigma and one pi bond with each oxygen atom and has one lone pair and its hybridization is \[s{{p}^{2}}\]. There are two paired electrons in the 3s orbital and four electrons in 3p orbital. In order to form four bonds, it needs four unpaired electrons. Therefore, one 3p electron shifts to an empty 3d orbital. Now, there are four unpaired electrons i.e. three unpaired electrons in three 3p orbitals and one unpaired electron in one 3d orbital. One 3s and two 3p orbitals get hybridized to form three equal \[s{{p}^{2}}\] hybrid orbitals. The remaining 3p and 3d orbitals remain unhybridized. The unpaired 3p electron forms pπ - pπ bond whereas the unpaired in d orbital forms dπ - pπ bond. Thus, there will be one dπ - pπ bond.
Similarly, in \[S{{O}_{3}}\], the sulphur atom forms one sigma and one pi bond with each oxygen atom and has no lone pair, it also has the hybridization of \[s{{p}^{2}}\]. There are two paired electrons in the 3s orbital and four electrons in 3p orbital. In order to form four bonds, it needs six unpaired electrons. Therefore, one s electron and two 3p electrons shifts to an empty 3d orbital. Now, there are six unpaired electrons i.e. one in s orbital, three unpaired electrons in three 3p orbitals and two unpaired electrons in one 3d orbital. One 3s and two 3p orbitals get hybridized to form three equal \[s{{p}^{2}}\] hybrid orbitals. The remaining 3p and 3d orbitals remain unhybridized. The unpaired 3p electron forms pπ - pπ bond whereas the two unpaired in d orbital forms dπ - pπ bond. Thus, there will be two dπ - pπ bonds.
In \[Cl{{O}_{4}}^{-}\], the chlorine atom has 7 valence electrons, and it forms a bond with four oxygen atoms, the chlorine atom forms one sigma and one pi bond with three of the oxygen atom and a single bond with the left one, its hybridization is \[s{{p}^{3}}\]. There are two paired electrons in the 3s orbital and 5 electrons in 3p orbital. In order to form four bonds, it needs seven unpaired electrons. Therefore, two 3p electrons and a 3s shift to an empty 3d orbital. Now, there are seven unpaired electrons i.e. three unpaired electrons in three 3p orbitals and three unpaired electrons in one 3d orbital and one in 3s. One 3s and three 3p orbitals get hybridized to form three equal \[s{{p}^{3}}\] hybrid orbitals. The remaining 3p and 3d orbitals remain unhybridized. The unpaired 3p electron forms pπ - pπ bond whereas the unpaired in d orbital forms dπ - pπ bond. Thus, there are three dπ - pπ bonds.
So, the correct option is (b).
Note: You can also find the hybridization by adding the number of sigma bonds and the lone pairs. dπ - pπ bonding is formed due to the sideways overlap of p and d orbitals. pπ-dπ bonds will be formed when π bonds are more than the no. of unhybridized p orbitals left.
Complete step by step solution:
Now in the given question, in \[S{{O}_{2}}\], sulphur has six valence electrons (\[3{{s}^{2}}3{{p}^{4}}\]) and it forms bond with two oxygen atoms, the sulphur atom forms one sigma and one pi bond with each oxygen atom and has one lone pair and its hybridization is \[s{{p}^{2}}\]. There are two paired electrons in the 3s orbital and four electrons in 3p orbital. In order to form four bonds, it needs four unpaired electrons. Therefore, one 3p electron shifts to an empty 3d orbital. Now, there are four unpaired electrons i.e. three unpaired electrons in three 3p orbitals and one unpaired electron in one 3d orbital. One 3s and two 3p orbitals get hybridized to form three equal \[s{{p}^{2}}\] hybrid orbitals. The remaining 3p and 3d orbitals remain unhybridized. The unpaired 3p electron forms pπ - pπ bond whereas the unpaired in d orbital forms dπ - pπ bond. Thus, there will be one dπ - pπ bond.
Similarly, in \[S{{O}_{3}}\], the sulphur atom forms one sigma and one pi bond with each oxygen atom and has no lone pair, it also has the hybridization of \[s{{p}^{2}}\]. There are two paired electrons in the 3s orbital and four electrons in 3p orbital. In order to form four bonds, it needs six unpaired electrons. Therefore, one s electron and two 3p electrons shifts to an empty 3d orbital. Now, there are six unpaired electrons i.e. one in s orbital, three unpaired electrons in three 3p orbitals and two unpaired electrons in one 3d orbital. One 3s and two 3p orbitals get hybridized to form three equal \[s{{p}^{2}}\] hybrid orbitals. The remaining 3p and 3d orbitals remain unhybridized. The unpaired 3p electron forms pπ - pπ bond whereas the two unpaired in d orbital forms dπ - pπ bond. Thus, there will be two dπ - pπ bonds.
In \[Cl{{O}_{4}}^{-}\], the chlorine atom has 7 valence electrons, and it forms a bond with four oxygen atoms, the chlorine atom forms one sigma and one pi bond with three of the oxygen atom and a single bond with the left one, its hybridization is \[s{{p}^{3}}\]. There are two paired electrons in the 3s orbital and 5 electrons in 3p orbital. In order to form four bonds, it needs seven unpaired electrons. Therefore, two 3p electrons and a 3s shift to an empty 3d orbital. Now, there are seven unpaired electrons i.e. three unpaired electrons in three 3p orbitals and three unpaired electrons in one 3d orbital and one in 3s. One 3s and three 3p orbitals get hybridized to form three equal \[s{{p}^{3}}\] hybrid orbitals. The remaining 3p and 3d orbitals remain unhybridized. The unpaired 3p electron forms pπ - pπ bond whereas the unpaired in d orbital forms dπ - pπ bond. Thus, there are three dπ - pπ bonds.
So, the correct option is (b).
Note: You can also find the hybridization by adding the number of sigma bonds and the lone pairs. dπ - pπ bonding is formed due to the sideways overlap of p and d orbitals. pπ-dπ bonds will be formed when π bonds are more than the no. of unhybridized p orbitals left.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

