
What is the median of the first 10 natural numbers?
Answer
518.4k+ views
Hint: In this problem, we have to find the median of the first 10 natural numbers. We know that the first 10 natural numbers starting from 1 are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. We know that the formula to find the median value is \[Median=\dfrac{{{\left( \dfrac{n}{2}+1 \right)}^{th}}term+{{\left( \dfrac{n}{2} \right)}^{th}}term}{2}\]. We can count the given number and substitute the n value to get the median of the first 10 natural numbers.
Complete step-by-step answer:
Here we have to find the median of the first 10 natural numbers.
We know that the first 10 natural numbers starting from 1 are
1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Here we can see that there are 10 numbers given
\[\Rightarrow n=10\]
Where the number of terms is in even.
We know that the formula to find the value of median whose n value is given,
\[\Rightarrow Median=\dfrac{{{\left( \dfrac{n}{2}+1 \right)}^{th}}term+{{\left( \dfrac{n}{2} \right)}^{th}}term}{2}\]
We can now substitute the value of n in the above formula, we get
\[\Rightarrow Median=\dfrac{\left( \dfrac{10}{2}+1 \right)+\left( \dfrac{10}{2} \right)}{2}\]
We can now simplify the above step, we get
\[\Rightarrow Median=\dfrac{6+5}{2}=\dfrac{11}{5}\]
We can now divide the above fraction, we get
\[\Rightarrow Median=\dfrac{11}{5}=5.5\]
Therefore, the median of the first 10 natural numbers is 5.5.
Note: We should always remember that the formula to find the median value with n number of terms is \[\Rightarrow Median=\dfrac{{{\left( \dfrac{n}{2}+1 \right)}^{th}}term+{{\left( \dfrac{n}{2} \right)}^{th}}term}{2}\]. We should also know that the natural numbers are the number system, which is from 1 to infinity.
Complete step-by-step answer:
Here we have to find the median of the first 10 natural numbers.
We know that the first 10 natural numbers starting from 1 are
1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Here we can see that there are 10 numbers given
\[\Rightarrow n=10\]
Where the number of terms is in even.
We know that the formula to find the value of median whose n value is given,
\[\Rightarrow Median=\dfrac{{{\left( \dfrac{n}{2}+1 \right)}^{th}}term+{{\left( \dfrac{n}{2} \right)}^{th}}term}{2}\]
We can now substitute the value of n in the above formula, we get
\[\Rightarrow Median=\dfrac{\left( \dfrac{10}{2}+1 \right)+\left( \dfrac{10}{2} \right)}{2}\]
We can now simplify the above step, we get
\[\Rightarrow Median=\dfrac{6+5}{2}=\dfrac{11}{5}\]
We can now divide the above fraction, we get
\[\Rightarrow Median=\dfrac{11}{5}=5.5\]
Therefore, the median of the first 10 natural numbers is 5.5.
Note: We should always remember that the formula to find the median value with n number of terms is \[\Rightarrow Median=\dfrac{{{\left( \dfrac{n}{2}+1 \right)}^{th}}term+{{\left( \dfrac{n}{2} \right)}^{th}}term}{2}\]. We should also know that the natural numbers are the number system, which is from 1 to infinity.
Recently Updated Pages
Questions & Answers - Ask your doubts

Master Class 9 Social Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
The average rainfall in India is A 105cm B 90cm C 120cm class 10 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

