
A man on tour travels first 160 km at 64 km/hr and the next 160 km at 80 km/hr. Find the average speed for the first 320 km of the tour.
\[
A.{\text{ }}35.55Km/hr \\
B.{\text{ }}36Km/hr \\
C.{\text{ }}71.11Km/hr \\
D.{\text{ }}77Km/hr \\
\]
Answer
204.6k+ views
Hint: Average speed may be defined as the total time taken by the man to cover the total distance. In this question first calculate the total time taken by the man to cover 320 km distance and then divide it by total time.
We know that $\left[ {{\text{time}} = \dfrac{{{\text{distance}}}}{{{\text{speed}}}}} \right]$
Given that the man travels first $160km$ at a speed of $64km/hr$
Time taken to cover $160km$ is
$ \Rightarrow {t_1} = \dfrac{{160}}{{64}}hr$
And the next $160km$ travels at a speed of $80km/hr$
Time taken to cover next $160km$ is
$ \Rightarrow {t_2} = \dfrac{{160}}{{80}}hr$
Total time taken to cover a distance of $320km$ is given by adding time ${t_1}$ and ${t_2}$
$
t = {t_1} + {t_2} \\
t = \left( {\dfrac{{160}}{{64}} + \dfrac{{160}}{{80}}} \right)hr \\
t = \dfrac{9}{2}hr \\
$
The average speed is
$
{\text{avg}}{\text{.speed}} = \dfrac{{{\text{distance}}}}{{{\text{time}}}} \\
= \dfrac{{320}}{{\dfrac{9}{2}}}km/hr \\
= \dfrac{{640}}{9}km/hr \\
= 71.11km/hr \\
$
Hence, the average speed for the first 320 km of the tour is 71.11Km/hr.
So, option C is the correct option.
Note: These types of problems are commonly word problems which tell to find anyone of these distance, time, speed and average speed. In these types of problems remember the relation between speed, distance and time. Read the statement carefully and make the conditions accordingly to solve the problem.
We know that $\left[ {{\text{time}} = \dfrac{{{\text{distance}}}}{{{\text{speed}}}}} \right]$
Given that the man travels first $160km$ at a speed of $64km/hr$
Time taken to cover $160km$ is
$ \Rightarrow {t_1} = \dfrac{{160}}{{64}}hr$
And the next $160km$ travels at a speed of $80km/hr$
Time taken to cover next $160km$ is
$ \Rightarrow {t_2} = \dfrac{{160}}{{80}}hr$
Total time taken to cover a distance of $320km$ is given by adding time ${t_1}$ and ${t_2}$
$
t = {t_1} + {t_2} \\
t = \left( {\dfrac{{160}}{{64}} + \dfrac{{160}}{{80}}} \right)hr \\
t = \dfrac{9}{2}hr \\
$
The average speed is
$
{\text{avg}}{\text{.speed}} = \dfrac{{{\text{distance}}}}{{{\text{time}}}} \\
= \dfrac{{320}}{{\dfrac{9}{2}}}km/hr \\
= \dfrac{{640}}{9}km/hr \\
= 71.11km/hr \\
$
Hence, the average speed for the first 320 km of the tour is 71.11Km/hr.
So, option C is the correct option.
Note: These types of problems are commonly word problems which tell to find anyone of these distance, time, speed and average speed. In these types of problems remember the relation between speed, distance and time. Read the statement carefully and make the conditions accordingly to solve the problem.
Recently Updated Pages
If 81 is the discriminant of 2x2 + 5x k 0 then the class 10 maths JEE_Main

The weight of a 13 m long iron rod is 234 kg The weight class 10 maths JEE_Main

The centroid of a triangle is the point of concurrence class 10 maths JEE_Main

A man on tour travels first 160 km at 64 kmhr and -class-10-maths-JEE_Main

The population of a city increases each year by 4 of class 10 maths JEE_Main

The area of square inscribed in a circle of diameter class 10 maths JEE_Main

Trending doubts
JEE Main 2026: Exam Date, Syllabus, Eligibility, Application Form & Preparation Tips

NTA JEE Main 2026 Registration Live: Check Dates, Fees, and Eligibility Here

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Syllabus 2026 (Updated)

Newton’s Laws of Motion Explained: Concepts, Formulas & Uses

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

NCERT Solutions for Class 10 Maths Chapter 15 Probability

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

All Mensuration Formulas with Examples and Quick Revision

