
The area of square inscribed in a circle of diameter ‘p’cm is-
A. ${P^2}$ cm sq
B. $\dfrac{p}{4}$ cm sq
C. $\dfrac{{{p^2}}}{2}$ cm sq
D. $\dfrac{p}{2}$ cm sq
Answer
204.6k+ views
Hint: First we draw a square inscribed in a circle, then form a diameter in the square of ‘p’ cm then by using Pythagoras theorem calculate any side of the square. And finally find the area of square to get the final answer by using the formula : Area of square = ${\left( {{\text{side}}} \right)^2}$
Formula: Pythagoras Theorem
$A{B^2} + B{C^2} = A{C^2}$
And area of square = ${\left( {{\text{side}}} \right)^2}$
Complete step-by-step solution
Consider the diagram of the square inscribed circle with diameter of p cm.

Given that the diameter of the circle is p cm. so the diagonal of the square is also p cm
Now by using the formula of Pythagoras theorem
Pythagoras theorem- A theorem attributed to the Pythagoras that the square on the hypotenuse of a right angled triangle is equal to the sum of squares on the other two sides.
$
A{B^2} + B{C^2} + A{C^2} \\
A{B^2} + A{B^2} = {P^2} \\
\Rightarrow 2A{B^2} = {P^2} \\
\Rightarrow AB = \dfrac{P}{{\sqrt 2 }} \\
$
Now the area of square is
Area= square of side
\[
\Rightarrow \dfrac{p}{{\sqrt 2 }} \times \dfrac{p}{{\sqrt 2 }} \\
\Rightarrow \dfrac{{{p^2}}}{2} \\
\]
So the area is $\dfrac{{{p^2}}}{2}{\text{cm sq}}$
Hence option C is the correct answer.
Note- First we draw a diagram according to the question and draw a diameter in it of P cm, after that using Pythagoras theorem find the side of square and then from this find the area of square and answer is $\dfrac{{{p^2}}}{2}{\text{cm sq}}$.
Formula: Pythagoras Theorem
$A{B^2} + B{C^2} = A{C^2}$
And area of square = ${\left( {{\text{side}}} \right)^2}$
Complete step-by-step solution
Consider the diagram of the square inscribed circle with diameter of p cm.

Given that the diameter of the circle is p cm. so the diagonal of the square is also p cm
Now by using the formula of Pythagoras theorem
Pythagoras theorem- A theorem attributed to the Pythagoras that the square on the hypotenuse of a right angled triangle is equal to the sum of squares on the other two sides.
$
A{B^2} + B{C^2} + A{C^2} \\
A{B^2} + A{B^2} = {P^2} \\
\Rightarrow 2A{B^2} = {P^2} \\
\Rightarrow AB = \dfrac{P}{{\sqrt 2 }} \\
$
Now the area of square is
Area= square of side
\[
\Rightarrow \dfrac{p}{{\sqrt 2 }} \times \dfrac{p}{{\sqrt 2 }} \\
\Rightarrow \dfrac{{{p^2}}}{2} \\
\]
So the area is $\dfrac{{{p^2}}}{2}{\text{cm sq}}$
Hence option C is the correct answer.
Note- First we draw a diagram according to the question and draw a diameter in it of P cm, after that using Pythagoras theorem find the side of square and then from this find the area of square and answer is $\dfrac{{{p^2}}}{2}{\text{cm sq}}$.
Recently Updated Pages
If 81 is the discriminant of 2x2 + 5x k 0 then the class 10 maths JEE_Main

The weight of a 13 m long iron rod is 234 kg The weight class 10 maths JEE_Main

The centroid of a triangle is the point of concurrence class 10 maths JEE_Main

A man on tour travels first 160 km at 64 kmhr and -class-10-maths-JEE_Main

The population of a city increases each year by 4 of class 10 maths JEE_Main

The area of square inscribed in a circle of diameter class 10 maths JEE_Main

Trending doubts
JEE Main 2026: Exam Date, Syllabus, Eligibility, Application Form & Preparation Tips

Newton’s Laws of Motion Explained: Concepts, Formulas & Uses

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Syllabus 2026 (Updated)

NTA JEE Main 2026 Registration Live: Check Dates, Fees, and Eligibility Here

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

NCERT Solutions for Class 10 Maths Chapter 15 Probability

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

All Mensuration Formulas with Examples and Quick Revision

